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Abstract 

One of the key elements in the early stages of drug discovery is finding good hits to develop lead compounds. Although 

HTS has been used as a standardized technology for hit finding, it still bears some challenging drawbacks: expensive 

and low-quality data. Aiming at the same goal as HTS, virtual screening (VS) has been developed to reduce cost and 

increase efficiency. Recent studies show that VS can deliver numerous quality hits and a few of them even reach 

clinical trials. This paper uses HTS as a background to discuss the contributions, limitations and research trends in VS 

field as these two technologies complement each other.  

Keywords: high-throughput screening, virtual screening, hit compounds, lead compounds, structure-based drug design, 

ligand-based drug design. 

Tóm tắt 

Bước quan trọng đầu tiên của quá trình khám phá thuốc chữa bệnh là tìm ra các hợp chất chất dẫn. Và phương pháp 

sàng lọc hiệu suất cao (HTS) được xem là công nghệ chuẩn để thực hiện bước này. Tuy nhiên, sử dụng HTS còn gặp 

nhiều khó khăn do chi phí cao và hiệu suất thấp. Với cùng mục đích sử dụng, sàng lọc ảo (VS) được phát triển để khắc 

phục các nhược điểm của HTS, để giảm chi phí và tăng hiệu quả tìm kiếm các chất dẫn. Những nghiên cứu mới đây cho 

thấy VS có thể cung cấp các chất dẫn có chất lượng cao, một số đã và đang được thử nghiệm lâm sàn. Bài báo này thảo 

luận các đóng góp, hạn chế và xu hướng phát triển của VS trong tương lai. 

Từ khóa: sàng lọc hiệu suất cao, sàng lọc ảo, hợp chất dẫn, khám phá thuốc, thiết kế thuốc dựa trên máy tính. 

1. Introduction 

 Drug discovery and development (DDD) is 

a risky, and expensive process (figure 1). 

Screening to find hits is conducted after 

identifying drug targets and this task is 

routinely carried out by high-throughput 

screening (HTS), filtering and selecting the 

most suitable molecules among a library of 
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small chemicals or biologics [1]. For over two 

decades, HTS has become a standard 

technology in pharma and biotech companies 

[2], [3]. 

 

Figure 1: Seven steps in drug discovery 

HTS technology has evolved over three 

generations [4]: the first focused on quantity of 

compound screened, the second concentrated 

on efficiency and the third has emphasized on 

the flexibility and quality of library (figure 2).  

 

Figure 2: Workflow of contemporary HTS  [5].

HTS has been substantially contributing to 

DDD through providing new chemical entities 

for lead development [6]–[9]. Leveraging 

automation and miniaturization technologies, it 

has accelerated the drug discovery process [10] 

and generated many FDA-approved drugs [9]. 

Three critical factors determining the success of 

HTS campaign are druggable target, compound 

library and predictive assay [11], [12].  

Even though HTS has been widely used, the 

number of drugs approved by US-FDA is 

constantly low over two decades [13]. Given 

that HTS is a routine operation in 

pharmaceutical [14], it has been partly to blame 

for the decline in DDD [9], [15]. 

Indeed, HTS has some inherent drawbacks. 

First of all, the compound library is too small in 

comparison to the possible chemical space [16]. 

Medicinal chemistry assumes that there are 

sufficient small molecules for all binding sites 

found in biology [17]. Even though the exact 

number is unknown, the chemical space may 

contain about 1060 molecules [18]. While a good 

library must be diverse and lead-like [16], a 

typical library for HTS holds a few ten thousand 

to less than two million compounds [2].  

The next disadvantage of HTS is high cost. 

Running HTS is expensive and time-consuming 

because it is experimental-based. A single HTS 

screening program costs approximate 75 000 USD 

[13]. HTS service cost ranges from 0.1 to 1 USD 

per well [19]. Furthermore, the robotic systems 

and assay readers in HTS are costly, requiring up 

to a few millions of USD to set-up and maintain 

[2], [20]. In addition to resource, conducting HTS 

campaign is time-consuming, taking several 

months to a year to finish [21]. Furthermore, HTS 

program is highly specific, automatizing some 

expensive steps as assay development and 

validation is impossible. Moreover, HTS needs 

real high-quality library, containing many drug-

like molecules to screen, and an enormous amount 
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of time and money is demanded for collecting, 

synthesizing or/and buying.  

In spite of being equipped with advanced 

technologies, HTS is possibly already reaching 

its limited capacity. Currently, ultra-HTS can 

sample 100 000 compounds per day using 384 

or 1536-well microplates. In addition, this 

capacity depends on the availability of real 

compounds for cell-based or biochemical 

assays, which is not always the case.  

Finally, HTS often reports biased results. It 

encounters frequent hitters, aggregation 

problem, and “Pan-Assay Interference” 

compounds [22], [23] and frequently reports 

false-positive [24] and false-negative [25], [26]. 

Moreover, data handling and analysis are 

challenging in addition to the artifacts from 

readout technologies [27]. 

2. The role of virtual screening (VS) 

One approach to alleviate the ugliness of 

HTS is to embrace virtual screening (VS), 

which complements HTS, reducing the number 

of compounds to be tested experimentally.  

 

Figure 3. Overview of two categories in virtual screening [28]. 

Two major VS categories (figure 3) have 

been used over two decades are ligand-based 

virtual screening (LBVS) and target-based 

virtual screening (TBVS) [28], [29]. TBVS is 

conducted when structures of target molecules 

are known based on data from X-ray diffraction 

and NMR [29] or relied on homology modeling 

[29]–[31]. LBVS, on the other hand, is used 

when active ligands are known or the structure 

of targets is established [32].  
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Many scientists have tried to figure out the 

contributions of VS [33]–[37], but it has not 

been easy because it takes many years to see if 

the hits found by VS turn up to be approved 

drugs. In addition, this field is still evolving and 

not all VS results are in public domain, 

particularly those from pharmaceutical 

industry. To circumvent this difficulty, for 

instance, Van Vlijmen et al. had assessed the 

contribution of computational chemist in drug 

discovery based on the number of parents that 

these chemists hold [37], while others have 

mentioned highly potent and diverse 

chemotypes as successful proofs [33], [34], 

[36], [38]–[41].  

To offer a global view on how VS 

contributes to DDD, Slater suggested that VS 

performance can be evaluated by focusing on 

retrospective studies to extract statistical data [42].  

At smaller and specific case, VS 

performance can be assessed based on the 

ability to find hit compounds from a vast 

chemical space. In the best scenario hit 

compounds become approved drugs. Two 

questions guide us to assess different aspects of 

VS: (i) are VS methods reliable? (ii) is VS 

more efficient than other approaches in 

searching for hits?  

The first question asks for the validation of 

computational methods used in VS. The most 

common way based on a reference library, 

containing known active compounds and 

decoys [43], [44]. If VS reproduces the 

experimental result, the method is accepted. In 

addition, the binding modes of the hits found 

must be experimentally verified [40], [45], [46] 

and likewise, the biological activities must be 

reassessed through many bioassay formats in 

laboratory setting to ensure the reproducibility 

of results [47], [48]. 

A similar evaluation method is comparing 

VS results with that of HTS [49]. Doman et al. 

for instance found that hit rate of VS was 1700-

fold higher than HTS [38]. Similarly, Paiva et 

al. reported that hit rates from VS was 30-fold 

higher than HTS [50]. Most recently, Damm-

Ganamet et al. reported that hits found by HTS 

overlapped with more than 70% found by VS 

[40]. However, these groups used different 

libraries for screening, the comparison is 

therefore imperfect.  

The second question concerns the quantity 

and quality of hits found. Despite the great 

effort made, few hits discovered by VS have 

become drug candidates and approved for 

patients [34]. So far, structure-based discovery 

has helped to bring approximate 20 drugs in 

clinical uses [51].   

Typically, about 0.1 – 2.5% top-ranked 

molecules in VS result are selected as hit 

compounds, containing new chemotypes, on 

which potency can be improved for further 

exploration [18], [52], [53]. From 2014 to 2018, 

PubMed indexes about more than 100 

publications using VS, altogether filtered over 

93 million compounds and found more than 

12500 hits and bioassays confirmed that 

approximately 10% of these hits were actually 

bioactive [42].  

The success of VS in drug discovery can be 

demonstrated occasionally through some 

triumphant stories. For example, compound 

PRX-08066 (1 in figure 4), a potent and 

selective antagonist at serotonin 5-HT2B 

receptor against pulmonary arterial 

hypertension [54], was discovered and designed 

with the aid of computational approaches at 

EPIX Pharmaceuticals [34]. This compound 

has 5-HT2B binding affinity (Ki) of 3.4 nM and 

has been also studied for cancer treatment [55].  

Similarly, Damm-ganamet et al. has found a 
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highly potent hit series which became leads, 

among them one lead -  a quinoline tertiary 

alcohol (2 in figure 4), has been developed to 

be a New Chemical Entity [40]. Another 

example comes from study of Al-Sha et al., 

they screened more than 240000 molecules 

against Hsp90α protein and found many highly 

active hits which were confirmed by 

subsequent in vitro assays. The most potent hits 

are compound 3, 4 and 5 (in figure 4) with 

experimental IC50 of 3, 5, 6 nM, respectively. 

 

Figure 4. Some most potent hits found by VS. 

Most recently, Lyu et al. screened 130 and 

170 million compounds against AmpC and D4 

dopamine receptor, finding a phenolate 

inhibitor of AmpC and after being optimized, it 

attained binding affinity of 77 nM, placing it at 

the top most potent non-covalent inhibitors 

known [18]. Likewise, Gahlawat et al. screened 

libraries of natural products, FDA-approved 

drugs and known inhibitors; they found many 

potential lead compounds [56].  

Even though we are unable to assess 

holistically VS’s performance because of 

biased publish data [57] or lack of information 

from pharmaceutical industry [42], these few 

successful stories clearly demonstrated that VS 

has highly potential in DDD providing that it 

accesses to quality libraries and equipped with 

reliable computational methods. Unfortunately, 

these two conditions uncover the inherent 

limitations of VS.   

3. Limitation of VS 

Although VS is a promising technique to 

find hits and new chemotypes for lead 

compounds, it needs to overcome two 

limitations related to algorithm and database to 

achieve its full potential. 

The largest drawback of VS is its suboptimal 

algorithms. Hits reported from VS frequently 

contain false-positive compounds [34], [57], 

[58]. Because VS screens huge chemical 

libraries, the number of false-positive can be 

large, the cost of synthesis and in vitro tests to 

confirm results can be prohibitive. One reason 

is attributed to the current algorithms, which do 

not take into account the flexibility of target 
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molecules, knowing as a critical factor 

determining the accurate docking pose and 

binding affinity prediction, thus the ranking 

result in VS [42], [59]. Sometimes the 

algorithm is too specific; it works effectively 

for some systems but not the others [60], 

preventing it from screening across ligand-

target systems. 

The other limitation links with the quantity, 

quality and accessibility of ligand and target 

databases [61], [62]. Presently, chemical 

databases for DDD are fragmentary, some are 

in public domain, others are industrial. VS 

currently is unable synchronize all these 

sources of databases to access potential 

compounds more efficiently. Furthermore, the 

ligand databases are still too tiny in comparison 

to the possible chemical space [62]. This 

limitation asks for more effort to build standard 

and libraries with easily access [63]. If size of 

and accessibility to databases are important, so 

is quality. Since VS cannot find good hits if the 

stock does not hold that molecules as 

experiences demonstrated [64].    

4. Outlook  

VS has made grand contributions to DDD 

regardless of its many limitations. Fortunately, 

this field is still evolving, especially to cope 

with big data in Chemistry [65]. Building larger 

target databases to accelerate drug discovery 

process is especially useful for VS [66]. 

Recently, sequencing of human genome and 

pathogen [2], [67], [68] and the advancement of 

high-throughput crystallography and NMR [42] 

have offered more targets for VS.  

Similarly, constructing huge and focused 

ligand libraries for VS is significant [62], [69]–

[71]. Compounds are sourced from natural 

products [72], [73], combinatorial chemistry, 

DNA-encode library [74], [75]. These 

databases can be stored on cloud-based system 

to ease access [76]. Aiming at target screening, 

focused chemical databases have been built 

using lead-like and drug-like properties as well 

as target relevant characteristics as filtration 

criteria before screening. Today, many libraries 

(table 2) have been made available for public 

usage [77]–[79].  

Table 2: Some big and popular libraries for virtual screening 

 

Developing better computational methods to 

account for the flexibility of drug target is also 

an obvious trend [42], [80]. To simplify the 

complexity of the system, most of the 

algorithms in the past studies ignore the 

flexibility of target molecules and this is one of 

the reasons the screening result is not 

satisfactory. The improved methods are 

expected to deliver accurate VS results.  

Nowadays, the most obvious trend in drug 

discovery is the application of AI, specially 

machine learning and deep learning have 

already show many promising potentials [81], 

[82] dealing successfully with huge chemical 

databases.  

 

 

Library Source and purpose Number of compounds URL

ChEMBL
bioactive compounds with drug-like properties from 

medicinal chemistry literature
15 million https://www.ebi.ac.uk/chembl/

PubChem compounds from academic screening centers 109 million https://pubchem.ncbi.nlm.nih.gov/

ChemSpider compound structures from multiple sources 101 million http://www.chemspider.com/

ZINC
commercially-available compounds for virtual 

screening
980 million https://zinc.docking.org/

SureChEMBL compounds from chemical patents 17 million https://www.surechembl.org
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5. Conclusion 

Virtual screening has made important 

contributions to DDD, providing many hit and 

lead compounds with diverse chemical scaffold 

for further exploitation. Hitherto, to achieve its 

full potential, VS must overcome two 

challenges. First, it requires more reliable 

computational methods to account for the 

flexibility of drug targets and better scoring 

functions. Second, VS demands big and high-

quality chemical libraries to be used as 

reference database to validate computational 

methods, simultaneously as a pool to search for 

good hits. The screening efficiency would be 

higher if the chemical libraries are synergized 

and focused, and can be accessed easily. The 

future of VS relies on its capability to handle 

reliably big chemical databases using AI. 
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