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Strong two-scale convergence for a two-dimensional case
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Abstract
In this paper, we present definitions and some properties of the classical strong two-scale convergence for component-wise
vector or matrix functions in a two-dimensional case.
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Tóm tắt
Trong bài báo này, chúng tôi trình bày các định nghĩa và một số tính chất của hội tụ hai-kích thước mạnh cổ điển cho các
hàm vectơ hoặc ma trận trong một trường hợp hai chiều.

Từ khóa: đồng nhất hóa hai-kích thước; hội tụ hai-kích thước mạnh; hai chiều

1. Introduction

We are given in dimension two, a bounded
reference domain Ω=Ω1×Ω2 ∈R×R and a vari-
able x = (x1, x2) ∈Ω . In two-scale homogeniza-
tion theory, strong two-scale convergence can be
viewed as an intermediate property between the
usual (one-scale) weak and strong convergence.

In light of this spirit, we first give a necce-
sary review of the usual weak convergence in
the Hilbert space L2(Ω) then the definitions and
properties of the classical strong two-scale con-
vergence for component-wise vector or matrix

functions [1, 2], in a two-dimensional case.

2. Preliminaries

Latin indices are in the set {1,2}. The space
of functions, vector fields in R2, and 2× 2 ma-
trix fields, defined overΩ are represented respec-
tively by italic capitals (e.g. L2(Ω)), boldface Ro-
man capitals (e.g. V ), and special Roman capitals
(e.g. S).

In the rest of this paper, we use the following
notations [1]:
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• Y := [0,1]2 is the reference periodic cell.

• C 0(Ω) is the space of functions that vanish
at infinity.

• C∞
per(Y ) denotes the Y -periodic C∞ vector-

valued functions in R2. Here, Y -periodic
means 1-periodic in each variable y i , i =
1,2.

• The notation H 1
per(Y ), as the closure for

the H 1-norm of C∞
per(Y ), is the space of

vector-valued functions v ∈ L2(Y ) such
that v (y) is Y -periodic in R2.

•
〈v〉y = 1

|Y |
ˆ

Y
v (y)dy .

•

Hper(Y ) := {v ∈ H 1
per(Y ) | 〈v〉y = 0} .

• We use · for the canonical inner products
in R2 and R2×2, respectively.

• The notation . stands for ≤ up to a multi-
plicative constant that only depends on Ω
when applicable.

The Sobolev norm ‖ ·‖W 1,2
0 (Ω) has the form

‖v‖W 1,2
0 (Ω) = (‖v‖2

L2(Ω)
+‖∇v‖2

L2(Ω))
1
2 ;

here, ‖v‖L2(Ω) := ‖|v |‖L2(Ω) , where |v | represents
the Euclidean norm of the 2-component vector-
valued function v , and ‖∇v‖L2(Ω) := ‖|∇v |‖L2(Ω) ,
where |∇v | denotes the Frobenius norm of the
2×2 matrix ∇v . Recall that the Frobenius norm
on L2(Ω) is specified by |X |2 := X ·X = tr(X TX ) .

Let ε be some natural small scale. For po-
tential applications in homogenization, based on
[3, 4, 5, 6], we consider uε(x) ∈ W 1,2

0 (Ω) de-
pending on x1 only, that is, uε(x) = uε(x1), with
boundary conditions of Neumann type. As re-
marked in [7], we do not distinguish between
a function on R and its extension to R2 as a
function of the first variable. It is assumed that

uε(x1) = u
(

x1

ε

)
is a periodic function in x1 with

period ε, equivalently, u
(

x1

ε

)
= u(y1) is a peri-

odic function in y1 with period 1. That is, for any
integer k,

uε(x1) = uε(x1 +ε) = uε(x1 +kε) ,

equivalently,

u
(

x1

ε

)
= u

(
x1

ε
+1

)
= u

(
x1

ε
+k1

)
= u(y1 +k) .

3. Weak convergence

In the Hilbert space L2(Ω) , we describe the
basic notions of the usual weak convergence,
which is defined below [8].

Consider a sequence of functions uε ∈ L2(Ω).
Then, (uε) is said to be bounded in L2(Ω) if

limsup
ε→0

ˆ
Ω

|uε|2 dx ≤ c <∞ ,

for some positive constant c.
By definition, a sequence (uε(x)) ∈ L2(Ω) is

weakly convergent to u(x) ∈ L2(Ω) as ε→ 0, de-
noted by uε*u, if

lim
ε→0

ˆ
Ω

uε(x) ·φdx =
ˆ
Ω

u ·φdx , (1)

for any test function φ ∈ L2(Ω).
Furthermore, a sequence (uε) in L2(Ω) is

called strongly convergent to u ∈ L2(Ω) as ε→ 0,
denoted by uε→ u, if

lim
ε→0

ˆ
Ω

uε ·v εdx =
ˆ
Ω

u ·v dx , (2)

for every sequence (v ε) ∈ L2(Ω) which is weakly
convergent to v ∈ L2(Ω).

The following are well-known weak conver-
gence properties in L2(Ω).

(a) Any weakly convergent sequence is bounded
in L2(Ω).

(b) Compactness principle: any bounded se-
quence in L2(Ω) has a weakly convergent
subsequence.

(c) If a sequence (uε) is bounded in L2(Ω) and
(1) is satisfied for all φ ∈C∞

0 (Ω), then uε*

u ∈ L2(Ω).
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(d) If uε→ u ∈ L2(Ω) and v ε* v ∈ L2(Ω), then

lim
ε→0

ˆ
Ω

uε ·v εdx =
ˆ
Ω

u ·v dx .

(e) Weak convergence of (uε) to u in L2(Ω) to-
gether with

lim
ε→0

ˆ
Ω

|uε|2 dx =
ˆ
Ω

|u|2 dx

is equivalent to strong convergence of (uε) to
u in L2(Ω).

Hereafter, we denote by Y = [0,1]2 the cell of
periodicity. (In our paper, a periodic cell has the
form Y = [0,1]× [0,1] .) The mean value of a 1-
periodic function ψ(y1) is denoted by 〈ψ〉, that
is,

〈ψ〉 ≡
ˆ

Y 1
ψ(y1)dy1 .

Recall that y1 = ε−1x1, and we do not distinguish
between a function on Y 1 and its extension to Y
as a function of the first variable only.

Also, in our paper, the symbol L2(Y ) is used
not only for functions defined on Y but also
for the space of functions in L2(Y ) extended by
1-periodicity to all R2. Similarly, C∞

per(Y ) rep-
resents the space of infinitely differentiable 1-
periodic functions on the entire R2.

For later use, we need the following classical
result.

Lemma 3.1 (The mean value property). Let
h(y1) be a 1-periodic function on R and h ∈
L2(Y 1). Then, for any bounded domain Ω, there
holds the weak convergence

h
(

x1

ε

)
* 〈h〉 i n L2(Ω) as ε→ 0. (3)

Proof. The proof is based on property (c) and
can be found in [8].

4. Weak two-scale convergence

We have the following definition of weak
two-scale convergence in L2(Ω) (introduced by
in 1989 by Nguetseng) [1, 2].

Definition 4.1. Let (uε) be a bounded sequence
in L2(Ω). If there exist a subsequence, still de-
noted by uε, and a function u(x , y1) ∈ L2(Ω×Y 1),
where Y 1 = [0,1] such that

lim
ε→0

ˆ
Ω

uε(x)

(
φ(x)h

(
x1

ε

))
dx

=
ˆ
Ω×Y 1

u(x , y1)(φ(x)h(y1))dx dy1
(4)

for any φ ∈ C∞
0 (Ω) and any h ∈ C∞

per(Y 1), then
such a sequence uε is said to weakly two-scale
converge to u(x , y1). This convergence is denoted
by uε(x)** u(x , y1) .

For vectors uε, equation (4) implies

lim
ε→0

ˆ
Ω

uε(x) ·Φ
(

x ,
x1

ε

)
dx

=
ˆ
Ω×Y 1

u(x , y1) ·Φ(x , y1)dx dy1 ,

(5)

for every Φ ∈ L2(Ω;C per(Y 1)), whose choice is
explained in [9] (p. 8).

5. Strong two-scale convergence

The further extension of the class of test func-
tions in Definition 4.1 leads to the basis of the
following notion of the classical strong two-scale
convergence [8, 10].

Definition 5.1. A bounded sequence uε ∈ L2(Ω)
is called strongly two-scale convergent if there
exists u = u(x , y1) ∈ L2(Ω×Y 1) such that

lim
ε→0

ˆ
Ω

uε(x)vε(x)d x

=
ˆ
Ω×Y 1

u(x , y1)v(x , y1)d x d y1
(6)

for any bounded sequence vε(x) ∈ L2(Ω) such
that vε(x) ** v(x , y1) ∈ L2(Ω). This convergence
is denoted by uε(x) →→ u(x , y1).

For vector (or matrix) uε, equation (6) im-
plies

lim
ε→0

ˆ
Ω

uε(x) ·v ε(x)d x

=
ˆ
Ω×Y 1

u(x , y1) ·v (x , y1)d x d y1 .
(7)
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In the next well-known results, weak and
strong two-scale convergence can be viewed as
intermediate properties between the usual (one-
scale) weak and strong convergence.

Proposition 5.2. Let (uε) be a sequence in L2(Ω)
and u ∈ L2(Ω×Y 1). Then,

(i) uε→ u in L2(Ω) =⇒ uε→→ u in L2(Ω×Y 1) ,

whenever u is independent of y1, the con-
verse also holds,

(ii) uε →→ in L2(Ω×Y 1) =⇒ uε ** u in L2(Ω×
Y 1) ,

(iii) uε ** u in L2(Ω × Y 1) =⇒ uε *´
Y 1 u(·, y1)d y1 in L2(Ω) .

Proof. For (i), the proof is readily followed from
Definition 4.1, the mean value property (3), and
the property (d) of convergence in L2.

For (ii), it is obvious. Indeed, it suffices to
take, in Definition 5.1,

vε(x) =φ(x)h(ε−1x1) ,

φ ∈ C∞
0 (Ω),h ∈ L2(Y 1), and recall (3), to derive

(4) as desired. Moreover, from uε →→ u in L2(Ω×
Y 1) (6), taking vε = uε, one obtains the relation

lim
ε→0

ˆ
Ω

|uε(x)|2 d x =
ˆ
Ω×Y 1

|u(x , y1)|2 d x d y1 .

(8)
For (iii), by the definition of weak two-scale

convergence 4.1, it follows that

lim
ε→0

ˆ
Ω

uε(x)Φ

(
x ,

x1

ε

)
d x

=
ˆ
Ω×Y 1

u(x , y1)Φ(x , y1)d x d y1 ,

(9)

for every Φ ∈ L2(Ω;Cper(Y 1)). Choosing Φ= 1 in
(9) and applying the property (c) of weak conver-
gence, one obtains

uε(x)*

ˆ
Y 1

u(x , y1)d y1 = 〈u(x , ·)〉 , (10)

which implies that one can reach the usual weak
limit from the two-scale limit by taking the aver-
age over the cell of periodicity.

The converse of (ii) is also true as follows [8].

Lemma 5.3. Weak two-scale convergence
uε(x) ** u(x , y1) together with the relation (8)
implies strong two-scale convergence uε(x) →→
u(x , y1).

Proof. The proof is based on [8]. Consider an
arbitrary subsequence (still denoted by ε) ε→ 0
such that there exist limits

lim
ε→0

ˆ
Ω

uε(x)vε(x)d x =α , lim
ε→0

ˆ
Ω

|vε(x)|2 d x =β ,

where vε(x) ** v(x , y1). Then, using the lower
semicontinuity property [8] for t vε+uε , we ob-
tain

lim
ε→0

ˆ
Ω

|t vε(x)+uε(x)|2 d x

≥
ˆ
Ω×Y 1

|t v(x , y1)+u(x , y1)|2 d xd y1 .

Applying (8), we get

t 2β+2tα≥ t 2
ˆ
Ω×Y 1

|v |2d x d y1

+2t

ˆ
Ω×Y 1

uv d x d y1 .

Hence,

2t

(
α−
ˆ
Ω×Y 1

uv d x d y1
)

≥ t 2
(
−β+

ˆ
Ω×Y 1

|v |2d x d y1
)

.

On the right hand side of this inequality, we ap-
ply the lower semicontinuity property [8] again
for v ε. Then, with the arbitrariness of t , we must
have

α=
ˆ
Ω×Y 1

uv d x d y1 ,

which is our desired result.

The following theorem is stated and proved
in [8].

Theorem 5.4. Let uε(x) ∈ L2(Ω), uε(x) →→
u(x , y1). Suppose in addition that u(x , y1) is a
Carathéodory function, u(x , y1) ≤ Φ0(y1), Φ0 ∈
L2(Y 1). Then,

lim
ε→0

ˆ
Ω

|uε(x)−u(x ,ε−1x1)|2d x = 0. (11)
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