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Abstract
In this paper, we present two different approaches to h-adaptively refine triangular finite element messes. These two
strategies are designed to keep the shape regularity of the meshes almost the same and to preserve the sparsity pattern of
the resulting system of equations.
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Tóm tắt
Trong bài báo này, chúng tôi giới thiệu hai cách làm mịn thích nghi lưới phần tử hữu hạn dạng tam giác. Hai cách tiếp cận
này được thiết kế để giữ độ chuẩn hóa hình dạng của các lưới gần như không đổi và bảo toàn cấu trúc thưa của các hệ
phương trình cần giải.

Từ khóa: Phần tử hữu hạn loại h; chia lưới xanh đỏ; chia đôi theo cạnh dài nhất.

1. Introduction

The finite element method (FEM) is a popu-
lar method for solving partial differential equa-
tions (PDEs) [1, 2]. In FEM, the physical do-
main of the PDE is split into a finite num-
ber of elements. Together, they form a com-
putational mesh. For problems whose solutions
change rapidly, for example, those with singular-
ities or sharp fronts, adaptive meshes are a must
to provide good accuracy. This kind of meshes is

built gradually using adaptive refinement [3, 4].
In this paper, we will present two h-refinement
strategies.

In h-refinement, one refines an element in
two or more children elements of smaller sizes
while keeping the degree of the new elements
(degrees of the basis functions associated with
these elements) the same as their father’s.

Based on the range of influence, h-
refinements can be categorized in three different
strategies: global refinement, semi-global refine-
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ment, and local refinement.
In global mesh refinement, every element in

the mesh is refined (usually in the same way)
to obtain a finer mesh. Clearly, this is the sim-
plest strategy to implement. However, it is also
the most expensive strategy since many elements
are generated away from areas of interest. Some-
times, global mesh refinement is referred to as
uniform refinement.

A variation of global mesh refinement is
semi-global mesh refinement, in which elements
in one or more selected cross-sections of the
mesh are refined. In certain cases, this strategy
maybe implemented as easily as global refine-
ment and may be less wasteful. Nevertheless, this
strategy does not always work and is still consid-
ered uneconomical.

In the rest of this paper, we will review two
different approaches of (adaptive) local mesh re-
finement, in which only a selected group of ele-
ments is refined. This is a very attractive strat-
egy especially for problems with singularities
or sharp fronts since the refinement can be re-
stricted to those portions of the domain where it
is needed.

Requirement 1.1. For local mesh refinement to
be efficient, it is necessary that:

(i) elements to be refined can be determined
cheaply

(ii) the sparsity of the resulting systems of lin-
ear equations is preserved as the mesh is
refined.

(iii) the adaptive local mesh refinement proce-
dure can be implemented cheaply

In this paper, we assume (i) and focus only on
(ii) and (iii).

2. Red-Green Mesh Refinement

In this section, we present the work of Bank,
Sherman and Weiser in [5].

In h-adaptive meshing, to preserve the qual-
ity of the current mesh, one can use red refine-
ment1, which is sometimes called bisection-type
mesh refinement. In this type of refinement, a
triangular element t is subdivided into four tri-
angles called sons of t , by pairwise connecting
the midpoints of the three edges of t . Figure 1
(a) and (b) illustrate an element t and its children
after a red refinement.

Obviously, in red refinement, the children el-
ements are geometrically similar to their farther.
Therefore, they have the same shape regularity
quality as their father. This is an advantage of this
type of refinement. However, new vertices intro-
duced in red refinement usually break the confor-
mity of the triangulation. This can be seen from
Figure 1 (c) where an element t is red refined
several times. In the figure, except for vertices of
t , all other vertices are non-conforming.

These non-conforming vertices are usually
called irregular vertices and are rigorously de-
fined as follows.

Definition 2.1. A vertex is said to be regular if it
is a corner of each element it touches. A vertex is
said to be irregular if it is not regular.

Definition 2.2. The irregular index of a mesh is
the maximum number of irregular vertices on a
side of any element in the mesh. A k-irregular
mesh is a mesh with irregular index k

Figure 2 (a) shows an example of a 2-
irregular mesh.

Remark 2.3. Note that all boundary vertices
should be regular.

In general, it is advantageous to “regularize”
a mesh by restricting the number of irregular
vertices on each edge. There are several reasons
for that: simplifying computations such as ma-
trix assembly and mesh refinement, increasing
approximation power by ensuring that neighbor-
ing elements are not too different in sizes, and
guaranteeing that each element is in the support
of a bounded number of basis functions. There

1The name “red refinement” came after the name “green refinement” which is discussed later.
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(a) before (b) after (c) rule violation

Figure 1. Red refinement: before, after, and 1-irregular rule violation.

(a) before (b) after

Figure 2. A mesh before and after fixing rule violations.

are several ways to achieve this regularization. In
[5], Bank et al. suggested using the following 1-
irregular rule and some of its variants.

Rule 2.4. 1-Irregular Rule: Keeping the num-
ber of irregular vertices on any edge of any ele-
ment in the triangulation be at most one. In other
words, refine any element for which any of its
edges contains more than one irregular vertex.

Figure 2 (a) can also serve as an example of
a mesh with a violation of 1-irregular rule. The
mesh after fixing the violation is shown in Figure
2 (b).

In order to monitor the number of irregular
vertices on an edge of an element, one could use
the information of its level and neighbors.

Definition 2.5. The level ℓti
of an element ti is

defined inductively as follows

ℓti
=

{

1 if ti ∈T0

ℓt f
+1 if ti ∉T0

,

where t f is the father of ti and T0 is the geomet-
rically admissible initial mesh.

Definition 2.6. The neighbor t
j

i
of element ti

across its j th edge e
j

i
is the smallest element with

one edge completely overlapping e
j

i
.

Clearly, the number of irregular vertices on
an edge of an element is related to the difference
of its level and the level of one of its neighbors
across that edge.

Let T be a geometrically admissible mesh.
Assume that some elements in T are selected
to be red-refined owing to, for example, having
large errors. These refinements, in turn, intro-
duce some irregular vertices. During the refine-
ment process, 1-irregular rule is applied as of-
ten as possible to accomplish a regularized mesh
which, according to [5], has the following prop-
erties:

Proposition 2.7. Let T
′ be the mesh obtained

from T after some red refinements, and regular-
ization using 1-irregular rule. Then

(i) T
′ has irregular index 1.

(ii) T
′ uniquely contains the fewest elements of

any 1-irregular mesh that can be obtained
by refining T .
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(a) Nonzero basis functions in t (b) 2-neighbor rule violation

Figure 3. Nonzero basis functions (left) and 2-neighbor rule violation (right).

(iii) |T | ≤ 13|T ′|.

Remark 2.8. The property (iii) of proposition
(2.7) is usually pessimistic (see remark 2.11).

Besides the nice properties above, T
′ is still

not a geometrically admissible mesh owing to the
presence of irregular vertices. In addition, a tri-
angulation of irregular index 1 does not guaran-
tee that the number of nonzero basis functions2

in each element are exactly three. An example
is illustrated in Figure 3, where the triangula-
tion satisfies 1-irregular rule , but the four basis
functions corresponding to the vertices marked
by dots are nonzero in t .

To fix these issues, Bank et al. proposed us-
ing green refinement3, in which a vertex is con-
nected to the midpoint of the opposite edge of
the element we want to refine (see Figure 4 (a)).
The use of green refinement is determined by the
green rule described as follows

Rule 2.9. Green Rule: With as few elements as
possible, green refine any element with an irreg-
ular vertex on one or more of its edges.

For 1-irregular meshes, there are three cases
in which green rule can be applied. These cases
are shown in Figure 5.

Proposition 2.10. Let T
′ be an 1-irregular

mesh, for example, the resulting mesh in Pro-
portion 2.7. Assume that T

′′ is generated from
T

′ by applying the green rule wherever possible.
Then the following hold:

(i) For any element t ′′ in T
′′, there are at most

three basis functions having supports in it.
In addition, the restrictions of these basis
functions in t ′′ are linearly independent.

(ii) In T
′′, the support of a basis function in-

tersects with those of at most twelve other
basis functions.

(iii) |T ′′| ≤ 2|T ′|.

Remark 2.11. The properties (i) and (iii) of
proposition 2.10 are usually pessimistic. The
most common number of non-zeros in a row of
the stiffness matrix is seven, and for most meshes
encountered in practice, T

′′ contains fewer than
twice as many elements as T . Here, T

′ is ob-
tained from T after some red refinement and 1-
irregular regularization.

In addition, one could use a more aggressive
refinement strategy by applying, in conjunction
with 1-irregular rule and green rule, the follow-
ing 2-neighbor rule.

Rule 2.12. 2-Neighbor Rule: Red refine any
element t with two neighbors that have been red
refined.

An example of a mesh with a violation of 2-
neighbor rule is shown in Figure 3 (b).

When the 2-neighbor rule is used together
with the 1-irregular rule, one gets an 1-irregular
mesh in which each remaining irregular vertices
is located at the midpoint of an edge of a unique

2Here we only consider linear basis functions.
3The name “green refinement” came from graph theory, where sometimes special edges are distinguished by color.
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Figure 4. Refinement strategies.
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Figure 5. Cases when Green rule can be applied.

element. This implies that for such a mesh, only
the case in Figure 5 (a) occurs when green rule is
applied. For the resulting mesh, analogs of prop-
erties (ii) and (iii) in proposition 2.10 hold, but
the constants are usually bigger.

Algorithm 1 is an algorithm implementing
1-irregular rule in conjunction with 2-neighbor
rule.

Here we assume that a Boolean-valued func-
tion DV T EST , which decides whether an el-
ement should be refined, is available. Usually
DV T EST is the output of a self-adaptive mech-
anism within the code that uses local error in-
dicators. Sometimes, DV T EST can be a user
specification of a fixed refinement pattern. An
element in the mesh may be refined either be-
cause DV T EST indicates it should be refined,
or because it violates the 1-irregular rule or 2-
neighbor rule. It is also possible that an element
satisfies both rules at the beginning but violates
one of them later in the refinement process ow-
ing to the refinement of one of its neighbors. This

implies that an element can be examined by the
algorithm more than once.

Note that in Algorithm 1, elements are pro-
cessed in the order they are created, newly cre-
ated elements are placed at the end of the work-
ing list. In particular, when an element is exam-
ined, its neighbors are tested against 1-irregular
and 2-neighbor rules before it is checked by
DV T EST . This guarantees that these rules are
satisfied by meshes generated by Algorithm 1,
and that remaining irregular vertices are the sole
edge midpoints in some elements.

Since a given element has at most three
neighbors, we test (and possibly refine) at most
four elements at any step of Algorithm 1. Hence,
the complexity of Algorithm 1 is linear in the
number of elements.

3. Longest Edge Bisection

In this section we discuss longest edge bisec-
tion, another approach of h-adaptive meshing.
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Algorithm 1 Local Meshing Procedure For Red Refinement

Procedure REFINE
while (i ≤ nt ) do

for j = 1 to 3 do
if t

j

i
is unrefined then

if t
j

i
has more than one neighbor or ℓi > ℓ

t
j

i

+1 then

D IV I DE(t
j

i
);

end if
end if

end for
if DV T EST (ti ) then

D IV I DE(ti );
end if
i ← i +1;

end while
End
Procedure DIVIDE

si ← nt +1; nt ← nt +4;
for j = 0 to 3 do

create tsi+ j ;
end for

End

In longest edge bisection, an element is re-
fined into two smaller elements by connecting
the midpoint of its longest edge with the oppo-
site vertex as shown in Figure 4 (b).

Obviously, one chooses to bisect the longest
edge to maintain the shape regularity quality of
the mesh. In an element, the angle opposite to
the longest edge is the biggest one. Therefore, re-
finement by dividing that angle would reduce the
chance to have elements with small angles. How-
ever, bisecting an element introduces an irregu-
lar (nonconforming) vertex. This leads to further
refinement. The question is whether the process
terminates in finite steps and whether the result-
ing mesh has some control of the smallest angles.

The following theorem on “a lower bound on
the angles of triangulation constructed by bisect-
ing the longest edge” was given by Rosenberg
and Stenger in 1975.4

Theorem 3.1. Let α0 be the smallest interior an-
gle of T0, a given initial geometrically admissi-
ble triangulation. If α j is the smallest angle of
the triangulation T j obtained by the j th iterative
bisection of all the triangles generated from T0,
then α j ≥α0, for all j .

Later, in 1984, Rivara introduced several al-
gorithms using longest edge bisection and gave
a proof of their finiteness. The following is the
simplest version of her algorithms for local re-
finement discussed in [7]. Figure 6 shows an ex-
ample of using longest edge bisection algorithm,
in which newly created edges are labeled in the
order they are created.

Remark 3.2. Even though theorem 3.1 guaran-
tees a lower bound on the angles of triangulation
constructed by bisecting the longest edge, the
shape regularity quality of the mesh could be re-
duced significantly after several refinements. To

4The original result of Rosenberg and Stenger in [6] was stated slightly different. Here we use the version of Rivara used
in [7].
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Algorithm 2 Local Mesh Refinement Using Longest Edge Bisection

For each t ∈S0, bisect t by its longest edge.
k ← 1;
while Ik ,; do

for t ∈ Ik with irregular vertex P do
Bisect t by its longest edge.
if P is not on the longest edge then

Join P with the midpoint of the longest edge of t .
end if

end for
k ← k +1;

end while
Here S0 is the set of elements to be refined and Ik is the set of elements with irregular vertices at step
k.

1

2
3

4

B

C

A

Figure 6. Local application of Algorithm 2 for refining element ABC.

deal with this issue, we apply the mesh smooth-
ing technique, edge flipping, etc., to improve the
quality of the mesh generated from h-adaptive
meshing.

4. Conclusion

In this paper, we have presented two com-
mon approaches to adaptively refine triangular
finite element meshes. These approaches are at-
tractive in the sense that they preserve the shape
regularity of meshes and keep the sparsity pat-
tern of resulting system of linear equation almost

the same. These qualities are essential to have a
robust h-refinement algorithms.
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[4] W. Gui and I. Babuška. The h, p and h-p versions of
the finite element method in 1 dimension. Parts 1, 2,
3, Numerische Mathematik, 49(6):577–683, Novem-
ber 1986.

[5] Randolph E. Bank, Andrew H. Sherman, and Alan
Weiser. Refinement algorithms and data structures for
regular local mesh refinement. In Scientific computing
(Montreal, Que., 1982), IMACS Trans. Sci. Comput.,

I, pages 3–17. IMACS, New Brunswick, NJ, 1983.
[6] Ivo G. Rosenberg and Frank Stenger. A lower bound

on the angles of triangles constructed by bisecting the
longest side. Math. Comp., 29:390–395, 1975.

[7] M.-Cecilia Rivara. Algorithms for refining triangular
grids suitable for adaptive and multigrid techniques.
Internat. J. Numer. Methods Engrg., 20(4):745–756,
1984.

 

Nguyen Trung Hieu / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(54) (2022) 50-57 57 

 


