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Abstract

This research work aims at implementing a swarm intelligence based approach for solving complex constrained
optimization tasks. The € Particle Swarm Optimization (¢ PSO) is selected as the employed global optimizer. This
optimization method is developed in Python to facilitate its implementations. The newly developed program has been
tested with two basic design problems in civil engineering.
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Tém tit

Nghién ctru ciia chiing t6i xay dung mot cong cu t6i wu hoa duya trén tri tué bay dan. Phuong phap & PSO duoc lya chon
de giai cac bai toan toi uu hoa toan cuc. € PSO da dugc chiing tdi phat trién véi ngdn ngit 1ap trinh Python dé day manh
tinh ng dung cuia cong cu nay trong thyc tién. Chuong trinh méi da dugc thir nghiém véi 2 bai toan toi vu hoa co ban
trong nganh xay dung.

Tir khéa: Thuat toan t6i wu hoa bay dan; Tdi wu hoa thiét ké, Tri tué bay dan; Thuat toan tim kiém, Xay dung dan dung.

1. Introduction variables and constraints. Researchers and
practitioners have increasingly relied on
metaheuristic to deal with constrained
optimization problems [8-15].

Constrained optimization is an important
research area in various engineering fields [1-
5]. Civil engineers are required to solve design
problems in which an objective function is Notably, Takahama, Sakai and Iwane [16]
either minimized or maximized and a set of has proposed the &-method wused with
constraints must be satisfied [6, 7]. Such design ~ metaheuristics for dealing with constrained
problems can be very challenging because they ~ optimization problems. Using the ¢ method, the
often involve a large number of design selection operation of metaheuristics is

“Corresponding Author: Hodng Nhdt Pirc, Institute of Research and Development, Duy Tan University, Da Nang,
550000, Vietnam; Faculty of Civil Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
Email: hoangnhatduc@duytan.edu.vn


mailto:hoangnhatduc@duytan.edu.vn

Hoang Nhat Duc, Nguyen Quoc Lam / Tgp chi Khoa hoc va Cong nghé Pai hoc Duy Tan 3(52) (2022) 34-40

modified by taking into account the constraint
violation degree of each individual. Hence, this
approach is capable of handling a large number
of constraints. In this research, an optimization
model based on the ¢ method and the Particle
Swarm Intelligence metaheuristic is developed
in Python. The newly developed tool is tested
with two basic design tasks in civil engineering.
We select Python in this work because it is an
interpreted high-level general-purpose
programming language that has the advantages
of simplicity and code readability.

2. Methodology

Particle Swarm Optimization (PSO) [17] is
confirmed to be one of the most widely and
successfully used metaheuristic. PSO is robust
and can easily be implemented on a wide range
of  optimization  tasks [18-24].  This
metaheuristic mimics the behavior of flocks of
birds or pools of fish. The movement of a
swarm is directed towards the optimization of
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food search. The movement of these animals is
optimized based on their coordinated
movements [25, 26].

The PSO algorithm first generates a swarm
of S individual within the boundary of the
searched space. Given an objective function
and a set of constraints, the algorithm computes
the objective function and constraint functions’
values. Similar to the standard PSO, the ¢éPSO
also relies on the concept of local and global
best. The local best of a particle is associated
with a position (Xig), an objective function
value (Fgs), and a constraint satisfaction index
(#5)- The global best is also characterized by
these three records (Xes, Fes, and ¢z ). The
constraint violation degree ¢(x) can be coded
in Python (see Fig. 2.1a) and is defined as
follows [16, 27, 28]:

#(x) = | min; (0,9, () |+ max; | h;(x)| (1)

for i in range(PS):
Pop_i Pop[1i,
Fval[i], G_i
Nc = G_i.shape[@] # number
Sum_Constr_Vio_i = @
for k in range(Nc):

if G_i[k] < @:
Sum_Constr_Vio_i

Phi[i] = Sum_Constr_Vio_i

= . ]

ObjFun(Pop_1i)

of constraints

Sum_Constr_Vio_i + abs(G_i[k])

(@)

~def EpsCompare(F0 = 100, Phio =
Winner = 1
if Phio <=
Winner
if Phi Phil and FO < F1:
Winner %]
if Phi@ > esp or Phil > esp:
if Phie < Phil:
Winner 0
return Winner

= 0

esp and Phil <= esp and F@ < F1:

1.4, F1 =1, Phil = 2, esp = 1):

(b)

Fig. 2.1 The quantification of the constraint violation and ¢ selection operation coded in Python
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Using the computed values of ¢(x), the ¢
selection operation can be coded in Python
(refer to Fig. 2.1b) and stated as follows:

f<f,if ¢,p,<¢
(f.8) <. (fy.0,)=1f.<f,if =40,

@ < ¢,,0therwise

2)

where ¢ is initially set to be ¢(X,)and N =
0.2S. Moreover, ¢ is gradually reduced and
subsequently set to be O if the iteration counter
g > 0.7Gmax (Gmax = the maximum number of
searching iterations).

# Update velocity
for d in range(D):
rl = rn.random()
r2 = rn.random()
V[i, d] = K*(V[i, d] +

for d in range(D):

if Pop[i,d] > UB[d]:
Pop[i,d] = UB[d] -

if Pop[i,d] < LB[d]:
Pop[i,d] = LB[d] +

cl*r1*(Local_Best Pop[i,d]-Pop[i,d]) +
c2*r2*(Global_Best_Sol[d]-Pop[i,d]))
# update position and evaluate

Pop[i,d] = Pop[i,d] + V[i,d]

(UB[d]-LB[d])*rn.random()/10

(UB[d]-LB[d])*rn.random()/10

Fig. 2.2 The velocity computation and position update coded in Python

In a searching iteration, the velocity of a particle can be coded in Python (refer to Fig. 2.2) and

stated as as follows:

Vig == K[V g +C x L0 % (Xg g = Xig) + €, x50 % (Xsp.4 — Xig)] 3)

where K= 2

|2-U-JU?-4U |
constriction factor and U = ¢1 + C2. Vig is the
velocity of the ith particle in dth dimension.
XLe,d and XgB,d IS the local best and global best
of x. r1 and ry are two uniform random number
within [0,1].

Based on the computed velocity, the new
position of the particle is computed as follows:

is the

Xig =X tVig

(4)
3. Experimental result

In this section, the éPSO, which is coded in
Python, is employed to solve two basic
constrained  optimization  problems in
construction engineering. The first problem
involves designing a bar of different cross-
sections is subjected to a tensile force F = 50kN
(see Fig. 3.1). The design variables include

lengths (L1, L2, and L3) and diameters (D1, D2,
and Ds3) of three sections of the bar. The
objective function is the total volume of the bar.
This problem has three constraints involving
the stress in each section and the total
elongation of the whole system. The problem is
coded in Python (refer to Fig. 3.2) and
mathematically stated as follows:

3
f :ZLi x D,
Min i=1

st Gi(x)=35- F/A1>0
Ga(X) = 150 - F/A2 >0
Ga(X) =635 - F/A3 >0

()

_ FL, FL, FL,
Ga(X) = 0.15 - ( AT A3E)zo

where Gi(x), G2(x), Ga(x), Ga(x), and Gs(x) are
the problem’s constraints.
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Fig. 3.1 Hllustration of optimization problem 1

14 =def ConObjFun_Probleml(X = np.array([1, €])): 29 for i in range(Ne):
15 L = np.array([(X[e]), x[1], X[2]]) # mm 30 dL[i] = F*L[i]/(Area[i]*E)
16 D = np.array([X[3], X[4], X[5]]) # mm 31 Total L = np.sum(dL)
17 E = 200*(10**3) # N/mm2 32
18 F =56 *(lo**3) # N 33 f = X[0]*X[3] + X[1]*X[4] + X[2]*X[5]
19 Ne = 3 # number of elements 34 g = np.zeros(4)
20 Area.:.np.zeros(Ne) 35 g[0] = 35 - Stress[0]
21 for i in range(Ne):
22 Area[i] = np.pi * (D[i]**2)/4 36 gl1] = 150 - Stress[1]
23 Stress = np.zeros(Ne) 37 gl2] = 635 - Stress[2]
24 for i in range(Ne): 38 g[3] = 0.15 - Total L
25 Stress[i] = F/Area[i] 39 return f, g
26 # print("Stress:", Stress)
27 # dL = PL/(AE)
28 dL = np.zeros(Ne)

Fig. 3.2 Optimization problem 1 coded in Python

Fig. 3.3 lllustration of optimization problem 1

61 =def ConObjFun_Problem2(X = np.array([1, 3])): | 73 sig_allow = 10* 1000000
62 n = round(X[@], @) # 2 - 10 74 T_allow = 0.448 * 1000000
63 b = X[1] # 6.1 - 0.5 75 E = 1600000 * ©0.00689476 * 1000000
64 d = X[2] # ©.1 - 0.5 76 I = b*(d**3)/12
65 L0 =4.8#m 77 delta_allow = L1/360
66 L1 =3.0 #m 78 g = np.zeros(4)
67 s = Le/(n-1) 79 A = b*d*d/6
68 W = S*6390 80 g[o] = sig_allow - Mmax/A
69 Mmax = w*(L1*%2)/8 81 g[1] = T_allow - Tmax
70 Smax = wXL1/2 82 g[2] = delta_allow - S5*w*(L1**4)/(384*E*I)
71 Tmax = 3*Smax/(2*b*d) 83 g3] =s - 1.5
72 f = d*b*L1*400 84 return f, g

Fig. 3.4 Optimization problem 2 coded in Python
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The second problem involves designing a
system of wood beam supporting concrete slab
formwork (demonstrated in Fig. 3.3 and coded
in Python as shown in Fig. 3.4). The decision
variables are the cross-sectional parameters (the
depth d and the width b) and the number of
required beams n. Thus, the beams are required
to support the operation of constructing a
reinforced concrete slab structure. The
objective herein is to find a set of d, b, and n
which minimizes the material cost of the

beams.
The centre-to-centre spacing of the beams s
is as follows:

s=L,/(n-1) )

where Lo = 4.8m.

The load per unit length acting on the slab
formwork is given by:

W=SxA4A

(7
where 4 = 6390N/m? denotes the load caused
by concrete weight that acts on the slab
formwork.

The maximum bending moment in the
beams caused by w is computed as follows:

_ 2
M., =wL1l"/8 ®)

The maximum shear forced in the beams
caused by w is computed as follows:

Optimization Progress
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Siex =WxL1/2 9)

The maximum shear stress in the beams
caused by w is computed as follows:

T =3S._,/(2bxd)

mex

The constraints of this problem specify
limitations on (i) bending stress, (ii) shear
stress, (iii) deflection of the beams [29-31], and
the requirement for s to ease on-site movement.
Hence, this problem is mathematically
formulated as follows:

Min.f =d xbx L1x %004 (10)

s.t.

M
Gu(X) = Ot g o >0

GZ (X) = TAllOW_TrTBX >0
G,(X) = S miow —5wL1? /(384El)>0
G,(x)=s-15>0

where L1 = 3 m is the length of a beam. Mass
density of wood J,,04iS 400 Kg/m3. o p0n =
denotes the allowable bending stress
10000000 N/m?.  7,,,=0.448 x 1000000
N/m?. The modulus of elasticity of wood E =
1600000 x 0.00689476 x 1000000 N/m?. The
moment of inertia of the cross section about the
centroidal axis | = bd*/12. &,,,,, = L1/360.
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Fig. 3.5 Optimization process: (a) Problem 1 and (b) Problem 2

The optimization progress of the two
problems solved by ¢PSO is demonstrated in
Fig. 3.5. Herein, the objective function value,
the constraint violation degree¢ (Phi), and ¢
(epsilon) parameter are plotted. It is noted that
when ¢ = 0, the allowance for constraint
violation completely stops. For problem 1, the
best found solution X = [80.08, 60.49, 40.37,
42.65, 20.62 12.01] with the objective function
value = 5148.29. The constraint vector of this
problem with the found solution is G = [3.46e-
03, 3.65e-01, 1.94e+02, 1.70e-03]. All elements
of G are greater than 0 and this indicates that all
of the constraints are satisfied. For the problem
2, the best found solution is [4, 0.20, 0.26] with
the objective function = 61.63. The constraint
vector of the 2" problem with the found
solution is G = [4.79e+06 6.86e+01 4.90e-03
1.00e-01].

4. Conclusion

This research develops a metaheuristic based
approach based on the PSO metaheuristic and
the € method for constraint handling. This
hybrid approach has been constructed in Python
to ease its implementation and development of
optimization models. The program, named as
¢PSO, has been tested with two Dbasic
constrained optimization tasks in which a bar
with different cross-section and a system of
wood beam supporting concrete slab formwork

are designed. Experimental result shows that
ePSO is a capable method to assist civil
engineers in the tasks of design optimization.
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