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Abstract  

The impact of different rice husk ash contents (5, 10, 20%) on mortar strength is examined at different elevated 

temperatures (150, 300, 450, 750oC). Based on a 45 experimental result data set, three machine learning algorithms 

including the Artificial Neural Network (ANN), the Least Squares Support Vector Regression (LS-SVR) and the 

Multivariate Adaptive Regression Splines (MARS) have been used to model the functional relationship between the 

mixture components and the compressive strength. As a result, it is shown that LS-SVR consists in the most capable 

approach for modeling mortar strength with a good value of coefficient of determination (R2) = 0.80. Accordingly, this 

machine learning approach is potential to be used in RHA contained mix design by construction engineers. 
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Tóm tắt 

Ảnh hưởng của hàm lượng tro trấu (5, 10, 20%) tới cường độ của vữa được nghiên cứu tại các nhiệt độ khác nhau gồm 

150, 300, 450, 750oC. Dựa trên 45 kết quả thí nghiệm, ba thuật toán máy học gồm Mạng thần kinh nhân tạo, Vec tơ hồi 

quy bình phương tối thiểu (LS-SVR), và Hồi quy thích ứng đa biến (MARS) được sử dụng để mô hình hóa mối quan hệ 

giữa các thành phần và cường độ vữa. Kết quả thu được cho thấy phương pháp Vectơ hồi quy bình phương tối thiểu mô 

hình chính xác nhất với hệ số R2 = 0.80. Như vậy, mô hình hóa bằng máy học hoàn toàn có thể được sử dụng để thiết kế 

hỗn hợp vữa chứa RHA theo cường độ.    

Từ khóa: Cường độ chịu nén; Nhiệt độ cao; Tro trấu; Vữa; Máy học.  

1. Introduction 

Concrete is recognized as one of the most 

widely used construction material. It is 

estimated that the average consumption of 

concrete is about 1 ton per year per every 

person on the planet [1]. However, the 

production of cement and concrete are 

associated with a significant environmental 

issue. Indeed, cement consists in concrete’s 

ingredient that contributes most to its embodied 
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energy. To produce 1 ton of cement in the 

optimal conditions, about 3 GJ of energy must 

be provided. In addition, cement is the largest 

source emission of CO2, followed by aggregate, 

accounting for 74-81% and 13-20% of the total 

amount CO2 yielded from the production of 

concrete [1]. Every kilogram of cement 

produced will release about 0.7-1.0 kg of CO2 

gas. The CO2 emission result from the calcite 

decomposition, the fuel combustion, and the 

transportation of cement between production 

and consumption sites, etc. Generally, the CO2 

amount released by the cement industry 

accounts for 5-7% of global emissions from all 

sectors [2]. 

Several solutions have been conducted to 

reduce the environmental impact of cement 

production, such as the change in the chemical 

composition of clinker, the use of alternative 

fuels, and other alternatives. One of the most 

promising solution is to minimize the clinker 

amount by maximizing the supplementary 

cementitious materials used in cement and 

promoting the use of blended cement [3].  

Among the mineral admixtures produced 

annually, such as fly ash (500 million tons), 

limestone (170 million tons), blast-furnace slag 

(75 million tons), rice husk ash with an output 

of about 37 million tons represents a promising 

replacing cementitious material [4]. The 

research on mortar or concrete mixtures 

incorporating RHA has attracted the attention 

of various scholars. Rukzon and Chindaprasirt 

[5] studied the strength and carbonation 

resistance of mortar mixture that employs 

portland rice husk ash cement. As a result, this 

works demonstrated that the inclusion of rice 

husk ash produces mortar mixtures with good 

strength and low porosity. Antiohos et al. [6] 

examined the pozzolanic properties of untreated 

RHA and its impact on the mortar strength, 

capillarity absorption, permeability and 

diffusion. 

Islam, et al. [7] established a statistical 

model for predicting the strength and slump of 

RHA incorporated high-performance concrete; 

the model constructed by regression analysis 

technique was able to yield well estimated 

properties of concrete containing RHA. Ambas, 

et al. [8] also constructed regression equations 

from experimental data to predict the 

compressive strength of a cement mortar with 

RHA replacement. Genetic programming 

approach have been employed by Sarıdemir [9] 

for predicting compressive strength of 

concretes containing rice husk ash; this 

research showed the strong potentiality of this 

learning method in the task of interest. 

This research is dedicated to the extension of 

the body of knowledge by proposing the 

application of three machine learning models 

for predicting compressive strength of mortar 

mixtures containing RHA. The Artificial 

Neural Network (ANN), Least Squares Support 

Vector Regression (LS-SVR) and Multivariate 

Adaptive Regression Splines (MARS) models 

were selected. 

2. Research method  

2.1. Description of experiments with mortar 

In order to investigate the effect of RHA on 

the compressive strength of the samples (Y), 

this study has collected 45 testing results. The 

six variables including RHA replacement 

percentage (X1), cement (X2), RHA (X3), 

superplasticizer (X4), heating temperature (X5), 

and mortar age (X6) are employed as 

influencing factors to estimate the sample 

compressive strength. The scatter plots of 

variables and the detailed description of several 

statistical properties of the variables are 

provided in Fig. 1 and Table 1, respectively. 
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Table 1. Mortar compositions 

Variables Unit Min Average Std. Max 

Rice husk ash replacement percentage % 0.00 13.00 11.00 30.00 

Cement g 315.00 391.50 48.47 450.00 

Rice husk ash  g 0.00 58.50 48.47 135.00 

Superplasticizer mL 0.00 0.77 0.89 2.40 

Heating Temperature oC 27.00 198.33 242.01 750.00 

Age day 3.00 37.67 21.59 56.00 

Compressive strength MPa 0.00 42.99 22.24 75.02 

 

Fig. 1 Scatter plots of influencing factors 

2.2. Machine learning methods 

2.2.1. Artificial Neural Network (ANN) 

ANN consists in a machine learning 

approach based on the biological neural 

networks which allows simulating the learning 

and inference processes of the human brain 

[10]. The advantages of the ANN consist in 

universal learning capability, fast computation, 

and good performance in nonlinear modeling 

[11]. Since ANN is a supervised learning 

approach, the learning task is to construct a 

function 
1: RYRXf D   from the  

 

collected data, where D denotes the number of 

attributing input. A typical ANN model 

consisting of the input, hidden, and output 

layers, is illustrated in Fig. 2. W1 and W2 denote 

the weight matrices of the hidden layer and the 

output layer, respectively; N represents the 

number of neurons in the hidden layer; b1 = 

[b11, b12,…, b1N] and b2 are a bias vector of the 

hidden layer and of the output layer, 

respectively; fA represents an activation 

function. The commonly employed activation 

function is the log-sigmoid. 
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Fig. 2 A typical Artificial Neural Network structure 

The overall structure of ANN model for 

regression analysis is given as follows [12]: 

))(()( 1122 XWbfWbXf A   (1) 

The model structure of an ANN including 

the weight matrices and the bias are adapted 

through a process of error backpropagation 

[13]. Moreover, the Mean Square Error (MSE) 

is employed as the objective function for 

training an ANN structure for regression 

analysis problems [14]: 





M

i

i
bbWW

e
M

MSE
1

2

,,,

1
min

2121

              (2) 

where M denotes the number of data samples; ei 

represents an output error. ei = Yi,P - Yi,A (Yi,P 

and Yi,A are the predicted and actual outputs, 

respectively). 

2.2.2. Multivariate Adaptive Regression Splines 

MARS [15] is a non-parametric regression 

method for constructing modeling equations 

directly from the collected data. This approach 

divides the original learning space into several 

sub-ranges of the prediction variables in order 

to establish a functional relationship between 

the influencing variables and the predicted 

variable [16]. MARS relies on a piecewise 

linear function for characterizing each local 

model and uses an adaptive mechanism to 

establish the final prediction model [17]. 

Previous research works [18-20] have approved 

the predictive capability of MARS in resolving 

various complex problems in the engineering 

field. The prediction model constructed by 

MARS is constructed through a set of basis 

functions (BFs) which describes the 

relationship between influencing factors and 

modeled output. A typical form of a BF is 

given as follows: 

( ) max(0, )mb x C x or 
              (3) 

( ) max(0, )mb x x C 
 

where bm is a BF; x denotes an input variable;  

C is a threshold parameter used to divide the 

original range of x into sub-ranges. 

The final functional form of the MARS 

prediction model is given as follows: 

0

1

( ) ( )
k

m m

m

f x b x 


 
                          (4) 

where M ,...,, 10  denote weighting 

coefficients; f(x) is the model output. k 

represents the number of weighting 

coefficients.  

It is noted that the model construction of 

MARS is divided into two phases: forward and 
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backward phases (see Fig. 3). In the first phase, 

BFs are added into the model to minimize the 

training error; this phase will be stopped when 

the maximum number of BF is reached. The 

second phase is to fend off overfitting problem 

by casting out several redundant BFs. In other 

words, the second phase aims at simplifying the 

model structure.  

Y (Compressive strength)

X (Influencing Factor)

Y (Compressive strength)

X (Influencing Factor)

Forward Phase Backward Phase
 

Fig. 3 Illustration of the MARS model learning phases 

Moreover, each sub-model of MARS is 

assessed by the generalized cross-validation 

(GCV) index [21, 22] as shown as follows: 

20.5 ( 1)
GCV MSE / (1 )

k c k

n

 
 

  (5) 

where MSE denotes the mean square error 

of the model, k is the number of BFs. n denotes 

the number of observations in the training data. 

c represents a penalty coefficient; Friedman 

[15] and Jekabsons [22] suggested that the 

appropriate value of the parameter c should be 

in the range of [2, 4]. 

2.2.3. Least Squares Support Vector Regression 

(LS-SVR) 

Proposed by Suykens et al. [23], LS-SVR is 

a computational intelligence approach which 

relies on the principal of structural risk 

minimization. This approach has been proved 

to be very effective in modeling complex 

engineering processes [24]. Compared to the 

standard Support Vector Machine, the learning 

phase of LS-SVR can be accomplished with 

less computational expense, because the 

training LS-SVR process only needs solving a 

set of linear equations [23, 25].  

To construct a regression model, it is 

required to prepare a dataset of mortar test 

samples in the following form: },{ kk yxD  , 

.,...,2,1 Nk   It is noted that k is the kth data 

sample and N represents the total number of 

data samples. It is noted that xk is a vector with 

input variables. In addition, yk represents the 

output of mortar compressive strength of the 

kth testing sample. LS-SVR constructs a 

functional mapping y(x) that computes the 

mortar compressive strength based on the input 

vector x that provides the information of mix 

components. Because the mapping function 

y(x) is possibly nonlinear, LS-SVR first 

transforms the input data from the original 

input space of six dimensions to a high 

dimensional feature space. This transformation 

is achieved through a mapping function )(x . 

Hence, the original nonlinear regression 

problem is converted to a linear one in the new 

learning space. The learning concept of LS-

SVR is illustrated in Fig. 4. 



Tran Thu Hien, Hoang Nhat Duc / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(54) (2022) 27-36 32 

x (Mix Components)

y 

(Compressive Strength )
Kernel Mapping

Φ(xu)

Φ(xv)

Φ(x)

Input space

Feature space

y 

(Compressive Strength )

 

Fig. 4 LS-SVR for concrete compressive strength modeling 

In the training phase, the model structure of 

LS-SVR is learnt by solving the following 

optimization problem [23]: 

Minimize 
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where Rek   denotes error variables; 0 is a 

regularization constant. 

To solve the aforementioned optimization 

problem, the Lagrangian is constructed as 

follows [23]: 
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where k  is a Lagrange multiplier. 

The Karush–Kuhn–Tucker conditions for 

optimality are employed by differentiating the 

Lagrangian function L(w,b,e,α) with the input 

variables in the following manner [23]: 
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After solving the above linear system, the 

final LS-SVR model is shown as follows [23, 

26]: 

1
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N
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where αk and b denote the solution to the linear 

system. k and N denote the index and the total 

number of data samples. xk and xl are two input 

samples in the training and testing set, 

respectively.  

Moreover, K(.) represents the kernel 

function which maps the input data from the 

feature space into the high-dimensional space. 

The radial basis kernel function is often 

selected to be used in LS-SVR [27]; this 

function is given as follows [23, 28]: 

)
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where   represents the radial basis kernel 

function parameter. 

3. Experimental result and comparison 

Because the problem of interest is 

formulated as a supervised learning, the data 

set, which includes 45 experimental tests, is 

randomly divided into the training set (90%) 

and the testing set (10%). These two sets are 

employed to construct and to verify the three 

employed machine learning models. In 













































Nkyebxw
L

Nke
e

L

b

L

xw
w

L

kkk

T

k

kk

k

N

k

k

N

k

kk

,...1,0)(0

,...,1,0

00

)(0

1

1










 (8) 

 



Tran Thu Hien, Hoang Nhat Duc / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(54) (2022) 27-36 33 

addition, to reliably assess the performance of 

these prediction models, the training and testing 

phases are carried out 20 times via a random 

subsampling process. In addition, the Root 

Mean Squared Error (RMSE) and the 

coefficient of determination (R2) are employed 

to quantify the prediction accuracy of the 

machine learning models. The RMSE exhibits 

the deviation between the compressive strength 

values actually observed and the compressive 

strength values predicted from a model. 

Meanwhile, the R2 quantifies the proportion of 

the variability in the compressive strength 

explained by the model; R2 indicates how well 

a machine learning model regresses the output 

value of interest on the input variables of 

mortar components. 

It is noted that the implementation of the 

ANN model relies on the MATLAB toolbox of 

Statistics and Machine Learning [29]. The 

training and prediction phases of LS-SVR is 

operated via the toolbox developed by De 

Brabanter, et al. [30]. In addition, the 

implementation of MARS is based on the 

toolbox provided by Jekabsons [22]. Prior to 

the model construction phases of ANN, LS-

SVR, and MARS, it is necessary to determine 

appropriate tuning parameters of those models. 

This task is widely known as mode selection. In 

this study, a five-fold cross-validation process 

[31] is employed to identify desired values of 

the models’ tuning parameters. The most 

suitable set of tuning parameters of each model 

is associated with the model with the minimal 

value of the average RMSE in the testing phase. 

To identify an appropriate configuration of 

the ANN model, it is required to set the number 

of neurons, the learning rate, the activation 

function, and the number of training epochs. 

The activation function and the number of 

training epochs are not very sensitive to the 

prediction outcome of ANN. In this study, the 

log-sigmoid function is selected as the 

activation function and the number of training 

epochs is fixed to be 5000. A five-fold cross-

validation process [31] is employed to identify 

desired values of the number of neurons in the 

hidden layer and the learning rate. The 

experimental results revealed that the number 

of neurons = 6 and the learning rate = 0.01 are a 

good setting of tuning parameters. Furthermore, 

MARS requires choosing the specification of 

the maximum number of basis functions (kmax) 

and the penalty coefficient (c). The appropriate 

values of MARS are as follows: kmax = 15 and c 

= 2.5. For the case of LS-SVR, the values of 

the regularization parameter (γ) and the kernel 

function parameter (σ) are found to be 100 and 

5, respectively. 

Table 2. Result Comparison 

Phase Performance 
ANN LS-SVR MARS 

Mean Std Mean Std Mean Std 

Training  RMSE 5.40 3.17 5.73 0.11 4.35 0.90 

 
R2 0.92 0.10 0.93 0.00 0.96 0.01 

Testing RMSE 8.20 5.78 7.28 2.51 7.86 3.49 

 
R2 0.70 0.53 0.80 0.26 0.74 0.26 
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Fig. 5 Model Prediction Results: (a) ANN, (b) LS-SVR, and (c) MARS 

Detail of the prediction result of all the 

models obtained from the repeated subsampling 

process is reported in Table 2. As 

aforementioned, RMSE and R2 of each model 

in both training and testing phases are presented 

to quantify the model predictive capability. In 

addition, the average value (mean) and standard 

deviation (Std) of the results are computed. It is 

observable that LS-SVR has achieved the best 

prediction performance in the testing phase 

with RMSE = 7.28 and R2 = 0.80, followed by 

MARS (RMSE = 7.86 and R2 = 0.74) and ANN 

(RMSE = 8.20 and R2 = 0.70). Thus, the 

prediction performance of LS-SVR is found to 
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be superior to those of MARS and ANN. The 

details of the prediction outcomes of the three 

models are graphically described in Fig. 5. 

4. Conclusion 

Motivated by the economic and 

environmental benefits of using RHA as a 

cement replacement material, this paper has 

investigated the durability, reflected by 

compressive strength, of mortar mixes 

containing RHA. Based on the collected data 

set, three machine learning algorithms, 

including ANN, LS-SVR, and MARS, have 

been employed to learn the functional mapping 

between mixture component and the sample 

strength. Based on a repeated sub-sampling 

procedure, LS-SVR has been identified as the 

most appropriate approach for modeling the 

collected data set with a good value of R2 = 

0.80. Hence, the prediction model constructed 

by LS-SVR can be useful for assisting 

construction engineers in mixture design tasks. 

The future direction of the current study 

includes the extension of the current data set to 

enhance its variability as well as the 

investigation of other advanced machine 

learning methods to improve the modeling 

accuracy of the compressive strength of the 

RHA contained mortar mixes. 
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