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Abstract

In this paper, by using the classical Banach contraction principle, we investigate and establish stability in the sense of
Ulam-Hyers and Ulam-Hyers-Rassias for random nonlinear integral equations.
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Tém tat
Trong bai bao nay, chiing tdi dua ra dinh nghia su én dinh Ulam-Hyers vi Ulam-Hyers-Rassias cho mdt 16p phuong trinh
tich phan ngau nhién phi tuyén tién dang Volterra. Sau d6 chiing tdi chiing minh rang 16p phuong trinh nay 6n dinh theo

nghia da dinh nghia & trén.

Tir khéa: Phuong trinh tich phan ngiu nhién; Phuong trinh Volterra; Nguyén ly di€ém bat dong Banach; Su 6n dinh

Ulam-Hyers-Rassias

1. Introduction

The Ulam-Hyers-Rassias stability problem
is motivated by Ulam’s talk given in 1940. In
the talk, he discussed a problem concerning the
stability of homomorphisms. In 1941, D.H. Hy-
ers [7] gave a partial solution to Ulam’s prob-
lem. In 1978, Th.M. Rassias [11] studied a sim-
ilar problem. The stability considered in [11]
is often called the Ulam-Hyers-Rassias stabil-
ity. The concept of the stability can also be de-
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fined for differential and integral equations, see
[1, 3, 4, 5, 6, 8, 9] and the references therein.
In recent years, the investigation of the stability
is an active subject that has become one of the
central themes of mathematical analysis.

In this paper, we first introduce the notions of
Ulam-Hyers and Ulam-Hyers-Rassias stabilities
for random integral equation (1) below and then
prove that the equation defined on not only fi-
nite but also infinite intervals has stability in the
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senses Ulam-Hyers and Ulam-Hyers-Rassias.

t
X; = h(t;w) +/ k(t,s;w) f(t,s,Xg)ds, tel,
0
(D

where:

1) I=1[0,T] or I =[0,00);

(1) w € Q, where Q is the supporting set of
the probability space (2, F,P);

(iii) X; := X(t;w), t € I, is the unknown ran-
dom process;

(iv) h(t;w),t € I, is the stochastic free term
or free random variable defined for t € I;

(v) the stochastic kernel k(¢, s;w) is a random
variable defined for (¢,s) € A, where A = {(¢,s) €
I?:0<s< t};

(vi) f(t,x) is a scalar function defined for
te I and x € R, where R is the real line.

This paper is organized as follows. In Section
2, the authors propose the notions of the stability
and state some remarks together with Banach’s
fixed point theorem which will be used in prov-
ing the theorems. The authors consider the sta-
bility for the equation (1) on the finite interval in
section 3 and on the infinite interval in section
4. In section 5, one example is given to illustrate
some theorems of the work. One notices that the
settings in papers [10] and [12] match perfectly
the purpose of this paper. Moreover, we would
like to stress that proving the stability of an equa-
tion defined on the infinite interval is a difficult
task.

2. Preliminaries

We shall consider in (1) the random solu-
tion X (¢;w) and the stochastic free term h(t;w)
to be functions of the real argument ¢ with val-
ues in the space L,(Q,%,P). Notice here that
L, (Q,%,P) is a Banach space with norm |- ||, =
VE(-)2, where E is the expectation with respect
to the probability measure P. The random func-
tion f(t,X;), under convenient conditions, will
also be a function of ¢ with values in L,(Q, %, P).
The stochastic kernel k(z,s;w) is an essentially
bounded function with respect to P for (z,s) € A.

It means that

ke, s;w)ll :=P —esssup|k(t, s;w)| <oo, (2)
w

that is

k(L s; )|l = inf{ sup |k(t, s;w)l} <oo, (3)
Qo [ 0\Qg

with P(Qg) = 0. The values of the stochastic ker-

nel for fixed ¢ and s will be in Lo, (Q, %,P), so

that the product of k(z,s;w) and f(f, X;) will al-

ways be in Ly (Q, F,P).

In order to show that equation (1) is stable
in the senses of Ulam-Hyers and Ulam-Hyers-
Rassias, we shall need some definitions and re-
marks in [10, 12].

Definition 2.1. (/12]) Let Cy, denote the space of
all continuous and bounded functions on I with
values in L, (Q, F,P).

Remark 2.2. It is known that Cy is a Banach
space with norm || - ||c, defined by

IX(&w)lc, =sup [ X(5w) 2. 4)

tel

Definition 2.3. ([12]) Let Cy denote the space
of all processes X(t;w) € Ly(Q,F,P) with
IX(t; )l < K$p(1),Vt € I where ¢p(t) >0 is a
given continuous function and K is a positive
constant.

Remark 2.4. It is known that Cy is a Banach
space with norm | - lc, defined by

I X (2 w)ll2
IX(E0)lc, = su {—} 5
Co te? ¢(1) ©)
Remark 2.5. If in Definition 2.3 one has ¢(t) =
1,Vtel then C; = Cy,.

Definition 2.6. ([10]) Let Cyy denote the
space of all processes X(t,s;w) € Cp with
1X(t,s;w)ll2 < Kp(£)p(s),V0 < s < t € I where
¢(t) >0 is a given continuous function and K is
a positive constant.

Remark 2.7. ([10]) It is known that Cy ¢ is a Ba-
nach space with norm || - |l ¢, o defined by

{IIX(t,s;w)IIz}. ©)
d(D)P(s)

1X(, s;0)llc,, = sup
O<s<tel
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In the following definitions, we introduce the
stability in the senses Ulam-Hyers and Ulam-
Hyers-Rassias for the random integral equation.

Definition 2.8. The equation (1) is said to have
Ulam-Hyers stability with respect to € if there ex-
ists a constant M, > 0 such that for each solution
X; € Ly(Q, F,P) of the following inequation

<€,

2

(7)
for all t € I, there exists a solution U; €
Ly (Q, %, P) of the equation (1) such that

¢
HXI— h(t;w) —/ k(t,s;w) f(t,s, Xs)ds
0

”Xt_Ut”ZSMe‘e)VtEI’ (8)

where M, is a constant that does not depend on
X

Definition 2.9. The equation (1) is said to
have Ulam-Hyers-Rassias stability with respect
to (1) if there exists a constant My > 0 such that
for each solution X; € L,(Q, F,P) of the follow-

ing inequation
= ¢(1),

| 2

)
for all t € I, there exists a solution U; €
Ly (Q,ZF,P) of the equation (1) such that

t
X;— h(t;w) —/ k(t,s;w) f(t,s,X5)ds
0

”Xt_UIHZSM(P(p(t))VtEIr (10)

where My is a constant that does not depend on
X;.

For the convenience of writing in later use,
we define the integral operators I' and A as fol-
lows

t
F(X(t;w))z/ k(t,s;0) f(t, 5, X(s;w))ds,
0
(11)

t
A(X(t;w)):h(t;w)+/ k(t,s;w) f(t,s, X(s;w))ds.
0

(12)

We now restate here the Banach’s fixed point
theory. This theorem will play an important role
in proving our main theorems.

Theorem 2.10. (/2]) (Banach’s fixed point the-
orem) Suppose (X, d) is a complete metric space
and T : X — X is a contraction (for some A €
[0,1)), d(T(x), T(y) < Ad(x,y) for all x,y € X.
Also suppose that ue X,6 >0, and

d(u, T(u)) <6. (13)

Then there exists a unique p € X such that p =

0
T (p). Moreover, d(u, p) < -1

3. Ulam-Hyers-Rassias stability on a finite in-
terval

In this section, we shall show that equa-
tion (1) in which f(¢,s, Xs) = f(s, X;) on the fi-
nite interval I = [0, T] is stable in the senses
of Ulam-Hyers and Ulam-Hyers-Rassias. Fur-
thermore, under suitable conditions, the equation
also has a unique solution.

Theorem 3.1. Suppose that the following as-
sumptions are satisfied

1. h(t,w)eCp,0<t=<T,

2. 1ft, X)) < KA+ |X¢),0<t<T,
31 X)-f, YD) <=alX;—Y,0=st=<T,
4. asupc 7y fot lk(t,s;w)llds < 1.

Then equation (1) has a unique solution in Cy
and the Ulam-Hyers stability.

Proof. For X; € Cy, using the triangle inequality,
inequality || [ -dsllz < [; I-12ds, and the follow-
ing estimation
IA(XD)]
t
= ‘h(t;w) +/ k(t,s;w) f(s, X5)ds
0

t
slh(t;w)|+/ k(e s; ) f (s, Xs)lds.
0
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one gets

IAXA)l2

t
< lh(tw)l2 + / k(z, s; )l f (s, XS)ds
0

2

t
< IIh(t;w)||z+/ Ilk(t, s; ) f (s, Xs)llods
0
t
< IIh(t;w)Ilz+/ lk(t, ;) IK 1+ | Xsll2)ds
0

t
< ||h(t;w)||Cb+K(1+”Xs”Cb)/ llk(z, s;w)llds
0

< |h(t;w)lc,

t
+ K+ | Xsllc,) sup / k(z, s;w)llds
te[0,T]J0

< 00.
Hence, A (Cp) < Cp. With X;, Y; € Cp, one gets
[A(Xy) — A(YR)]

t
/ k(t,s;w)(f(s,Xs) = f(s,Yy))ds
0

t
S/ (e, s; )l f (s, X5) = f(s, Ys)lds.
0
which implies that
IA(X:) — A(YP)l2

<

t
/ Ilk(z, s; )l f (s, Xs) = f(s, Ys)lds
0

2

t
5/ Wk (z, s; el f (s, Xs) = f(s, Ys)llads
0
t
5/ Ik (z, s;w)llall Xs — Ysllods
0
t
salle—Ysllcb/ lk(z, s;w)llds
0

t
<alXs-Yslc, sup / lk(z, s;w)llds.
tel0,T]J0

Thus,

IAX:) - A(YDlc,

t
< alXs—Yslc, sup / lk(z, s;w)llds.
te[0,T]J/0

By assumption (4), the mapping A is strictly
contractive. Thus, according to Banach’s fixed

point principle, equation (1) has a unique solu-
tion U; € Cy. Let X; € C, be a solution of the
inequation (7). It means that || X; — A(Xy)|2 <
€,Vt € [0, T], which implies | X; - A(X/)lc, <e€.
On the one hand, by the estimation (13) in Theo-
rem 2.10, one gets

1 X:—Utlc, < (14)

€
1-C’
where Cy = asup ¢ 1 fot lk(t,s; w)|lds. On the
other hand, one has

”Xt_Ut”ZS”Xl'_Utlle)Vte[O)T]' (15)

€
Thus, | X;—U¢ll2 < ¢ , which implies that the

1
equation (1) is stable in the sense Ulam-Hyers. It
completes the proof.

Theorem 3.2. Suppose that the following as-
sumptions are satisfied

~

. h(t,w)eCp,0=<t=<T,

2. 1f(t, X)) < KA+ |X¢]), 0<st<T,

3 Nf(t, X)-f(t, YDl <alX;=Yi, 0=st=<T,
4

. The function ¢(t) is positive and there ex-
ists a constant Ny > 0 such that

t
/ *(s)ds < Npp*(1),Vt € [0, T]
0

t
sup / P*(s)d's < oo,
0

t€(0,T]

5 a \/N(psupte[o_ﬂ f0t|||k2(t,s;w)|||ds< 1.

Then equation (1) has a unique solution in Cy,
and the Ulam-Hyers-Rassias stability with re-
spect to ¢(1).

Proof. For all X;,Y; € Cp, we set

dp(X,, V) = sup I Xe—Yell2
teio,71 1)
As in Theorem 3.1, one has A (Cj) < Cp, and it is
known that (Cy, dyp) is a complete metric space.
We assert that A is strictly contractive on Cp,.
Given any X;,Y; € Cp, let My, y, € [0,00) be an

(16)
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arbitrary constant such that dy(X;, Yy) < My, y,,
from wich we deduce that

X = Yello < Mx, v, p(8), Vt€[0,T]. (17)

By Schwarz inequality, one gets

IA(X;) — A(Yp)?
2

t
/ k(t, s;w)(f(s,Xs) = f(s,Yy))ds
0

t t
S/ kz(t,S;w)dS/ (f(s,X5) = f(s,Yo)2ds
0 0

t t

5/ |||k2(t,s;w)|||ds/ (f (s, X5) — (s, Ys)?ds.
0 0

Hence,

IAX) - AYDI3

t t
/ K22, ;0] ds / (£(5, X9 - [(5, Yy)2ds
0 0

t
- [l salas
0

<

t
/ (f(s,X5) = f(s, Yo))ds
0
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solution in the space Cj,.

Let X; be a solution of the inequation (7)
and let U; be the solution of the equation (1).
Since | X; — A(Xy)ll2 < ¢p(t), Vtel[0,T], one has
dy (X, A(Xy)) < 1. By the triangle inequality, one
obtains

de(Xt, Uy) < dp(Xy, A(Xy)) + dp(A(Xy), Up)
< dyp(Xy, A(X) + dp(A(Xy), AUY))
< 1 + Czd(P(Xty UI))

which implies that

dp(Xy, Uyp) <

= (19)

Hence,

X = Utll2 = Cpp(1), (20)

1
) where Cyp = -G It means that equation (1)

has the Ulam-Hyers-Rassias stability. The proof
) of the theorem thus is complete.

t t
20 3 2
= /0 1%t s; )| ds /0 175, X9 = (s, Y)llzds 4. Ulam-Hyers-Rassias stability on an infinite

5/0t|||k2(t, s;w)|||ds/0ta2||xs— Yl3ds.
Therefore,

IAX) - AYDI5

<o [IRusolds [, 00ds

<o [ IR sollds M, N0
Hence,

IAXD) =AYz = CoMx,, v, (1) (18)

where C, = a \/N(/, sup;cio.11 Jo 162 ;) || ds.
It implies that dy(A(Xy),A(Y;) < CoMx,y,.
Thus, one concludes that dy(A(X;),A(Yy) <
Cody(Xy, Yy) for any Xy, Y € Cp. By assump-
tion (5), the mapping A is strictly contractive on
the metric space (Cp, dgp). Thus, by the Banach’s
fixed point principle, equation (1) has a unique

interval

In this section, by making use of some simi-
lar assumptions on equation (1) given in the pa-
pers [10] and [12], we shall prove that the equa-
tion defined on the infinite interval I = [0,00) is
stable in the senses of Ulam-Hyers and Ulam-
Hyers-Rassias.

Theorem 4.1. Consider the random integral
equation (1) under the following conditions

1. h(t,w)e Cp, 0=,

2. 1f(t, 8, X)) < y(t,9)Xsl, 0 < s < t, where
Y(t, ) is a positive function.

3- |f(t)S)Xs) - f(t)s) Ys)l =
Yi,0=s<t,

ay(t, 9| Xs —

4. asuptzofoty(t, k(e s;w)llds < 1.

Then equation (1) has a unique solution in Cy
and the Ulam-Hyers stability.



Nguyen Tan Huy, Huynh Anh Thi / Tap chi Khoa hoc va Cong nghé Pai hoc Duy Tan 5(60) (2023) 80-87

Proof. As in Theorem 3.1, with X; € Cj, one
gets

IACX)l2

t
< IIh(t;w)Ilz+/ Ilk(z, s; ) f (2,8, Xs)l2ds
0
t
< Ilh(t;w)llz+/ ke, s;a)lly (s, I Xsllods
0
t
< ||h(t;w)”2+”Xs”Cb/ llk(z, s;w)lly (e, s)ds
0

t
< |h(t;w)lic, + 1 Xsllc, sup/ k(z, s;)lly(t, s)ds
0

t=0
< 0o0.

Therefore, A(Cp) < Cp,.

With X;, Y; € Cp, one gets
IAX:) =AY 2

t
S/ Wk (t, s; ) f (2,8, Xs) = f(2,8 Y)llods
0
t
S/ lk(t, s;)llay(t, I Xs— Ysllods
0
t
<alXs-— Ys”Cb/ ke, s;)lly(t,s)ds
0

t
<alXs-Yslc, sup/ lk(z, s; w)lly(t, s)ds.
0

t=0

Hence,
IA(Xy) — A(YDllc,

t
= IIXs—Ysllcbasug/ y (&, ) k(z, s;w)lllds.
= 0

By assumption (4), we state that A is strictly
contractive. Thus, by Banach’s fixed point prin-
ciple, equation (1) has a unique solution in Cj,.

Let X; be a solution of inequation (7) and let
U; be the solution of equation (1). As in Theorem
3.1, one obtains

€
”XI'_UZ’HZS 1 Vte[0,00), (21)

’
— L3

where C3 = asup. [y v(& )kt sw)lds,
which implies that equation (1) is stable in the

sense Ulam-Hyers and completes the proof.
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Theorem 4.2. Consider the random integral
equation (1) under the following conditions

1. h(t;w) € C(P’

2. 1f (8,8 X5)| = Pp(0)[z(t,w) +y(L,9)| XS]] for
0<s=<t<oo, where z(s,w) is a second or-
der stochastic process in Cy and y(t,s) >0
is a bounded continuous function defined
for0O<ss<t,

3- |f(trSrXS)_f(tvs) YS)| = a(,b(t)le_YS|yOS
S=<1I,

4. asup,. ) Ikt s;0)llp(s)ds < 1.

Then equation (1) has a unique solution in Cy
and the Ulam-Hyers-Rassias stability.

Proof. According to [10], (Cy¢,Cy) 1s admis-
sible with respect to operator I' in (11). That
is T'(Cy¢) = Cp. Condition (2) implies that
k(t,s;w) f(t,5,X;) is in Cy ¢ whenever X; € C.
Therefore, A(Cyp) < Cyp.

We shall show that if X; Y, € Cy then
k(t,s;w) f(t,s, Xs)—k(t, s;w) f(t,s, Ys) belongs to
C1,¢. By assumption (3), one has

[k(t,s;w)f(t,s,Xs)— k(t,s;w) f(t,s,Ys)]
P(s)p(t)
| Xs — Yl
b(s)

which implies that ||k(z,s;0) f(£, 5, Xs) —
k(t,s;0)f(2,8,Ys)llc,, < asupg<<, 1k (2, s; )l Xs—
Y5||C¢ < oo. Hence, k(t,sw)f(ts X)) —
k(t,s;w)f(t,5,Y;) € Cp when X Y5 € Cp.
Again, since (Cy g, Cp) is admissible with re-
spect to I', one has fotk(t,s;w)f(t,s,Xs)—
k(t,s;w)f(t,s,Y)ds € Cyp. Thus, one has
A(Cyp) < Cy.

As in proof of Theorem 4.1, one has the fol-
lowing estimates

< allk(t, s; w)ll

)

IA(X:) — AYD 2

t
< / k(, s; )N f (2,8, Xs) = f(2,5, Yo ll2ds
0

t
Sa¢(l‘)/ k(2 s; )N Xs = Ysll2dss.
0
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Therefore,
IA(Xy) — A(YP)l2
¢(1)

<a/ k(z, s; ) Xs — Ysll2ds

s||2
k(t,s;w s)ds
<a/ Il ( )||| (/)( ————¢)ds

< asup ( / llk(t, s;0) |||¢(s)ds) I1Xs— Ysllc,-
0

=0

from which we deduce that

IAX) —A(YDlc,

t
< asup (/ Ik (z, s; w) IIlcp(s)dS) 1 Xs = Yslic,-
=0 \JO
(22)

By assumption (4), the mapping A is strictly
contractive. Thus, according to Banach’s fixed
point principle, equation (1) has a unique solu-
tion Uy € Cy.

Let X; € Cy be a solution of inequation (9).
We have

X = AXD 2 = p(2), (23)

from which, we deduce the following inequality
I1X: = AXDlc, = 1.
By the triangle inequality, we get:

1X: = Utlic, = 1 Xs = AXDllc, + IAX) = AU e,

<1+ Gl X, - Yillc,

where C; = asuptzofot|||Ic(t,s;w)|||<p(s)ds.
Therefore,

”X[_ Ut”C(P =

-G (24)

1
Thus, | X;— Utlls < - (/)(t) Vit = 0, which

implies that equation (1) has the Ulam-Hyers-
Rassias stability with respect to ¢(¢). This ends
the proof. ]

5. An example

Let us consider the following random equa-
tion on probability space (Q2,%,P) that is one di-
mensional case in [12]

X(t,w) = A X(t;w) + f(t, X(w), (25)

for ¢ = 0 and where
1. X(t;w) is the unknown random process,

2. A(w) is arandom variable on the probabil-
ity space,

3. f(t,x) is a given function for ¢ = 0 and
x € R such that

lf(6,x) = ft, Y <alx-yl
with f(#,0) =0 and « sufficiently small.

The above random equation can be reduced
to the following random integral equation

t
X(t;0) = X' Xo (w)+ / eI £ (s, X (s;w))ds

0

(26)

where Xp(w) := X(0,w). Let the free stochastic
term of our equation be

h(t;w) = 2 Xy (w)
and let the stochastic kernel be

Aw)(t-5)

k(t,s;w)=e 0<s<t<oo.

As shown in Section 4 of [12], the following
holds for w € Qg

llk(t,s;0)ll < Ke 7)) (27)

where Qg is a subset of Q such that P(Qg) =1,
K > 0 and a as defined above. For the sake of
simplicity, we suppose that A(w) is almost sure
bounded above by —y where vy is a positive num-
ber. Thus, one has

llk(t, s; )l < e V9 (28)

which implies

t
/ lk(t, s;w)llds
0

t
< / e YIS
0

1 1
=—(1-e"H<-=,
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a ..
If — < 1 and under bounded condition on random

Var)gable Xo(w), all conditions in Theorem 3.1
are satisfied. One can conclude that the equation
(25) is stable in the sense of Ulam-Hyers. Simi-
larly, notice in this case that the function y(t, s)
is 1. One can show all conditions in Theorem 4.1
are satisfied as well.

Furthermore, for the case I = [0,1], if one
chooses the function ¢(#) = ¢, then the constant

Ny in Theorem 3.2 is 1/3. So if <1, all

6y
conditions in Theorem 3.2 are satisfied. Thus,

equation (25) is stable in the sense of Ulam-
Hyers-Rassias with respect to ¢.
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