
Abstract
In this paper, by using the classical Banach contraction principle, we investigate and establish stability in the sense of
Ulam-Hyers and Ulam-Hyers-Rassias for random nonlinear integral equations.
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Tóm tắt
Trong bài báo này, chúng tôi đưa ra định nghĩa sự ổn định Ulam-Hyers và Ulam-Hyers-Rassias cho một lớp phương trình
tích phân ngẫu nhiên phi tuyến tiến dạng Volterra. Sau đó chúng tôi chứng minh rằng lớp phương trình này ổn định theo
nghĩa đã định nghĩa ở trên.

Từ khóa: Phương trình tích phân ngẫu nhiên; Phương trình Volterra; Nguyên lý điểm bất động Banach; Sự ổn định
Ulam-Hyers-Rassias

1. Introduction

The Ulam-Hyers-Rassias stability problem
is motivated by Ulam’s talk given in 1940. In
the talk, he discussed a problem concerning the
stability of homomorphisms. In 1941, D.H. Hy-
ers [7] gave a partial solution to Ulam’s prob-
lem. In 1978, Th.M. Rassias [11] studied a sim-
ilar problem. The stability considered in [11]
is often called the Ulam-Hyers-Rassias stabil-
ity. The concept of the stability can also be de-

fined for differential and integral equations, see
[1, 3, 4, 5, 6, 8, 9] and the references therein.
In recent years, the investigation of the stability
is an active subject that has become one of the
central themes of mathematical analysis.

In this paper, we first introduce the notions of
Ulam-Hyers and Ulam-Hyers-Rassias stabilities
for random integral equation (1) below and then
prove that the equation defined on not only fi-
nite but also infinite intervals has stability in the
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senses Ulam-Hyers and Ulam-Hyers-Rassias.

X t = h(t ;ω)+
� t

0
k(t , s;ω) f (t , s, Xs)d s, t ∈ I ,

(1)
where:

(i) I = [0,T ] or I = [0,∞);
(ii) ω ∈ Ω, where Ω is the supporting set of

the probability space (Ω,F ,P);
(iii) X t := X (t ;ω), t ∈ I , is the unknown ran-

dom process;
(iv) h(t ;ω), t ∈ I , is the stochastic free term

or free random variable defined for t ∈ I ;
(v) the stochastic kernel k(t , s;ω) is a random

variable defined for (t , s) ∈∆, where ∆= {(t , s) ∈
I 2 : 0 ≤ s ≤ t };

(vi) f (t , x) is a scalar function defined for
t ∈ I and x ∈R, where R is the real line.

This paper is organized as follows. In Section
2, the authors propose the notions of the stability
and state some remarks together with Banach’s
fixed point theorem which will be used in prov-
ing the theorems. The authors consider the sta-
bility for the equation (1) on the finite interval in
section 3 and on the infinite interval in section
4. In section 5, one example is given to illustrate
some theorems of the work. One notices that the
settings in papers [10] and [12] match perfectly
the purpose of this paper. Moreover, we would
like to stress that proving the stability of an equa-
tion defined on the infinite interval is a difficult
task.

2. Preliminaries

We shall consider in (1) the random solu-
tion X (t ;ω) and the stochastic free term h(t ;ω)
to be functions of the real argument t with val-
ues in the space L2(Ω,F ,P). Notice here that
L2(Ω,F ,P) is a Banach space with norm ∥ · ∥2 =√
E(·)2, where E is the expectation with respect

to the probability measure P. The random func-
tion f (t , X t ), under convenient conditions, will
also be a function of t with values in L2(Ω,F ,P).
The stochastic kernel k(t , s;ω) is an essentially
bounded function with respect to P for (t , s) ∈∆.

It means that

|||k(t , s;ω)||| :=P−ess sup
ω

|k(t , s;ω)| <∞, (2)

that is

|||k(t , s;ω)||| = inf
Ω0

{
sup
Ω\Ω0

|k(t , s;ω)|
}
<∞, (3)

with P(Ω0) = 0. The values of the stochastic ker-
nel for fixed t and s will be in L∞(Ω,F ,P), so
that the product of k(t , s;ω) and f (t , X t ) will al-
ways be in L2(Ω,F ,P).

In order to show that equation (1) is stable
in the senses of Ulam-Hyers and Ulam-Hyers-
Rassias, we shall need some definitions and re-
marks in [10, 12].

Definition 2.1. ([12]) Let Cb denote the space of
all continuous and bounded functions on I with
values in L2(Ω,F ,P).

Remark 2.2. It is known that Cb is a Banach
space with norm ∥ ·∥Cb defined by

∥X (t ;ω)∥Cb = sup
t∈I

∥X (t ;ω)∥2. (4)

Definition 2.3. ([12]) Let Cφ denote the space
of all processes X (t ;ω) ∈ L2(Ω,F ,P) with
∥X (t ;ω)∥2 ≤ Kφ(t ),∀t ∈ I where φ(t ) > 0 is a
given continuous function and K is a positive
constant.

Remark 2.4. It is known that Cφ is a Banach
space with norm ∥ ·∥Cφ defined by

∥X (t ;ω)∥Cφ = sup
t∈I

{∥X (t ;ω)∥2

φ(t )

}
. (5)

Remark 2.5. If in Definition 2.3 one has φ(t ) =
1,∀t ∈ I , then C1 ≡Cb .

Definition 2.6. ([10]) Let C1,φ denote the
space of all processes X (t , s;ω) ∈ Cb with
∥X (t , s;ω)∥2 ≤ Kφ(t )φ(s),∀0 ≤ s ≤ t ∈ I where
φ(t ) > 0 is a given continuous function and K is
a positive constant.

Remark 2.7. ([10]) It is known that C1,φ is a Ba-
nach space with norm ∥ ·∥C1,φ defined by

∥X (t , s;ω)∥C1,φ = sup
0≤s≤t∈I

{∥X (t , s;ω)∥2

φ(t )φ(s)

}
. (6)
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In the following definitions, we introduce the
stability in the senses Ulam-Hyers and Ulam-
Hyers-Rassias for the random integral equation.

Definition 2.8. The equation (1) is said to have
Ulam-Hyers stability with respect to ϵ if there ex-
ists a constant Mϵ > 0 such that for each solution
X t ∈ L2(Ω,F ,P) of the following inequation∥∥∥∥X t −h(t ;ω)−

� t

0
k(t , s;ω) f (t , s, Xs)d s

∥∥∥∥
2
≤ ϵ,

(7)
for all t ∈ I , there exists a solution Ut ∈
L2(Ω,F ,P) of the equation (1) such that

∥X t −Ut∥2 ≤ Mϵϵ,∀t ∈ I , (8)

where Mϵ is a constant that does not depend on
X t .

Definition 2.9. The equation (1) is said to
have Ulam-Hyers-Rassias stability with respect
to φ(t ) if there exists a constant Mφ > 0 such that
for each solution X t ∈ L2(Ω,F ,P) of the follow-
ing inequation∥∥∥∥X t −h(t ;ω)−

� t

0
k(t , s;ω) f (t , s, Xs)d s

∥∥∥∥
2
≤φ(t ),

(9)
for all t ∈ I , there exists a solution Ut ∈
L2(Ω,F ,P) of the equation (1) such that

∥X t −Ut∥2 ≤ Mφφ(t ),∀t ∈ I , (10)

where Mφ is a constant that does not depend on
X t .

For the convenience of writing in later use,
we define the integral operators Γ and Λ as fol-
lows

Γ(X (t ;ω)) =
� t

0
k(t , s;ω) f (t , s, X (s;ω))d s,

(11)

Λ(X (t ;ω)) = h(t ;ω)+
� t

0
k(t , s;ω) f (t , s, X (s;ω))d s.

(12)

We now restate here the Banach’s fixed point
theory. This theorem will play an important role
in proving our main theorems.

Theorem 2.10. ([2]) (Banach’s fixed point the-
orem) Suppose (X ,d) is a complete metric space
and T : X → X is a contraction (for some λ ∈
[0,1)), d(T (x),T (y) ≤ λd(x, y) for all x, y ∈ X .
Also suppose that u ∈ X ,δ> 0, and

d(u,T (u)) ≤ δ. (13)

Then there exists a unique p ∈ X such that p =
T (p). Moreover, d(u, p) ≤ δ

1−λ .

3. Ulam-Hyers-Rassias stability on a finite in-
terval

In this section, we shall show that equa-
tion (1) in which f (t , s, Xs) ≡ f (s, Xs) on the fi-
nite interval I = [0,T ] is stable in the senses
of Ulam-Hyers and Ulam-Hyers-Rassias. Fur-
thermore, under suitable conditions, the equation
also has a unique solution.

Theorem 3.1. Suppose that the following as-
sumptions are satisfied

1. h(t ;ω) ∈Cb , 0 ≤ t ≤ T,

2. | f (t , X t )| ≤ K (1+|X t |), 0 ≤ t ≤ T,

3. | f (t , X t )− f (t ,Yt )| ≤α|X t −Yt |, 0 ≤ t ≤ T,

4. αsupt∈[0,T ]

� t
0 |||k(t , s;ω)|||d s < 1.

Then equation (1) has a unique solution in Cb

and the Ulam-Hyers stability.

Proof. For X t ∈Cb , using the triangle inequality,
inequality ∥� t

0 ·d s∥2 ≤
� t

0 ∥·∥2d s, and the follow-
ing estimation

|Λ(X t )|

=
∣∣∣∣h(t ;ω)+

� t

0
k(t , s;ω) f (s, Xs)d s

∣∣∣∣
≤ |h(t ;ω)|+

� t

0
|||k(t , s;ω)|||| f (s, Xs)|d s.
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one gets

∥Λ(X t )∥2

≤ ∥h(t ;ω)∥2 +
∥∥∥∥� t

0
|||k(t , s;ω)|||| f (s, Xs)|d s

∥∥∥∥
2

≤ ∥h(t ;ω)∥2 +
� t

0
|||k(t , s;ω)|||∥ f (s, Xs)∥2d s

≤ ∥h(t ;ω)∥2 +
� t

0
|||k(t , s;ω)|||K (1+∥Xs∥2)d s

≤ ∥h(t ;ω)∥Cb +K (1+∥Xs∥Cb )

� t

0
|||k(t , s;ω)|||d s

≤ ∥h(t ;ω)∥Cb

+K (1+∥Xs∥Cb ) sup
t∈[0,T ]

� t

0
|||k(t , s;ω)|||d s

<∞.

Hence, Λ (Cb) ⊂Cb . With X t ,Yt ∈Cb , one gets

|Λ(X t )−Λ(Yt )|

=
∣∣∣∣� t

0
k(t , s;ω)( f (s, Xs)− f (s,Ys))d s

∣∣∣∣
≤
� t

0
|||k(t , s;ω)|||| f (s, Xs)− f (s,Ys)|d s.

which implies that

∥Λ(X t )−Λ(Yt )∥2

≤
∥∥∥∥� t

0
|||k(t , s;ω)|||| f (s, Xs)− f (s,Ys)|d s

∥∥∥∥
2

≤
� t

0
|||k(t , s;ω)|||∥ f (s, Xs)− f (s,Ys)∥2d s

≤
� t

0
|||k(t , s;ω)|||α∥Xs −Ys∥2d s

≤α∥Xs −Ys∥Cb

� t

0
|||k(t , s;ω)|||d s

≤α∥Xs −Ys∥Cb sup
t∈[0,T ]

� t

0
|||k(t , s;ω)|||d s.

Thus,

∥Λ(X t )−Λ(Yt )∥Cb

≤α∥Xs −Ys∥Cb sup
t∈[0,T ]

� t

0
|||k(t , s;ω)|||d s.

By assumption (4), the mapping Λ is strictly
contractive. Thus, according to Banach’s fixed

point principle, equation (1) has a unique solu-
tion Ut ∈ Cb . Let X t ∈ Cb be a solution of the
inequation (7). It means that ∥X t −Λ(X t )∥2 ≤
ϵ,∀t ∈ [0,T ], which implies ∥X t −Λ(X t )∥Cb ≤ ϵ.
On the one hand, by the estimation (13) in Theo-
rem 2.10, one gets

∥X t −Ut∥Cb ≤
ϵ

1−C1
, (14)

where C1 =αsupt∈[0,T ]

� t
0 |||k(t , s;ω)|||d s. On the

other hand, one has

∥X t −Ut∥2 ≤ ∥X t −Ut∥Cb ,∀t ∈ [0,T ]. (15)

Thus, ∥X t−Ut∥2 ≤ ϵ

1−C1
, which implies that the

equation (1) is stable in the sense Ulam-Hyers. It
completes the proof.

Theorem 3.2. Suppose that the following as-
sumptions are satisfied

1. h(t ;ω) ∈Cb , 0 ≤ t ≤ T,

2. | f (t , X t )| ≤ K (1+|X t |), 0 ≤ t ≤ T,

3. | f (t , X t )− f (t ,Yt )| ≤α|X t −Yt |, 0 ≤ t ≤ T,

4. The function φ(t ) is positive and there ex-
ists a constant Nφ > 0 such that

� t

0
φ2(s)d s ≤ Nφφ

2(t ),∀t ∈ [0,T ]

sup
t∈[0,T ]

� t

0
φ2(s)d s <∞,

5. α
√

Nφ supt∈[0,T ]

� t
0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s < 1.

Then equation (1) has a unique solution in Cb

and the Ulam-Hyers-Rassias stability with re-
spect to φ(t ).

Proof. For all X t ,Yt ∈Cb , we set

dφ(X t ,Yt ) = sup
t∈[0,T ]

∥X t −Yt∥2

φ(t )
<∞. (16)

As in Theorem 3.1, one has Λ (Cb) ⊂Cb and it is
known that (Cb ,dφ) is a complete metric space.

We assert that Λ is strictly contractive on Cb .
Given any X t ,Yt ∈ Cb , let MX t ,Yt ∈ [0,∞) be an

Nguyen Tan Huy, Huynh Anh Thi / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(60) (2023) 80-87 83 



arbitrary constant such that dφ(X t ,Yt ) ≤ MX t ,Yt ,
from wich we deduce that

∥X t −Yt∥2 ≤ MX t ,Ytφ(t ), ∀t ∈ [0,T ]. (17)

By Schwarz inequality, one gets

|Λ(X t )−Λ(Yt )|2

=
∣∣∣∣� t

0
k(t , s;ω)( f (s, Xs)− f (s,Ys))d s

∣∣∣∣2

≤
� t

0
k2(t , s;ω)d s

� t

0
( f (s, Xs)− f (s,Ys))2d s

≤
� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s

� t

0
( f (s, Xs)− f (s,Ys))2d s.

Hence,

∥Λ(X t )−Λ(Yt )∥2
2

≤
∥∥∥∥� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s

� t

0
( f (s, Xs)− f (s,Ys))2d s

∥∥∥∥
2

=
� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s

∥∥∥∥� t

0
( f (s, Xs)− f (s,Ys))2d s

∥∥∥∥
2

≤
� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s

� t

0
∥( f (s, Xs)− f (s,Ys))∥2

2d s

≤
� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s

� t

0
α2∥Xs −Ys∥2

2d s.

Therefore,

∥Λ(X t )−Λ(Yt )∥2
2

≤α2
� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s ·

� t

0
M 2

X t ,Yt
φ2(s)d s

≤α2
� t

0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s ·M 2

X t ,Yt
Nφφ

2(t ).

Hence,

∥Λ(X t )−Λ(Yt )∥2 ≤C2MX t ,Ytφ(t ) (18)

where C2 =α
√

Nφ supt∈[0,T ]

� t
0

∣∣∣∣∣∣k2(t , s;ω)
∣∣∣∣∣∣d s.

It implies that dφ(Λ(X t ),Λ(Yt )) ≤ C2MX t ,Yt .
Thus, one concludes that dφ(Λ(X t ),Λ(Yt )) ≤
C2dφ(X t ,Yt ) for any X t ,Yt ∈ Cb . By assump-
tion (5), the mapping Λ is strictly contractive on
the metric space (Cb ,dφ). Thus, by the Banach’s
fixed point principle, equation (1) has a unique

solution in the space Cb .

Let X t be a solution of the inequation (7)
and let Ut be the solution of the equation (1).
Since ∥X t −Λ(X t )∥2 ≤φ(t ), ∀t ∈ [0,T ], one has
dφ(X t ,Λ(X t )) ≤ 1. By the triangle inequality, one
obtains

dφ(X t ,Ut ) ≤ dφ(X t ,Λ(X t ))+dφ(Λ(X t ),Ut )

≤ dφ(X t ,Λ(X t ))+dφ(Λ(X t ),Λ(Ut ))

≤ 1+C2dφ(X t ,Ut ),

which implies that

dφ(X t ,Ut ) ≤ 1

1−C2
. (19)

Hence,
∥X t −Ut∥2 ≤Cφφ(t ), (20)

where Cφ = 1

1−C2
. It means that equation (1)

has the Ulam-Hyers-Rassias stability. The proof
of the theorem thus is complete.

4. Ulam-Hyers-Rassias stability on an infinite
interval

In this section, by making use of some simi-
lar assumptions on equation (1) given in the pa-
pers [10] and [12], we shall prove that the equa-
tion defined on the infinite interval I = [0,∞) is
stable in the senses of Ulam-Hyers and Ulam-
Hyers-Rassias.

Theorem 4.1. Consider the random integral
equation (1) under the following conditions

1. h(t ;ω) ∈Cb , 0 ≤ t ,

2. | f (t , s, Xs)| ≤ γ(t , s)|Xs |, 0 ≤ s ≤ t , where
γ(t , s) is a positive function.

3. | f (t , s, Xs) − f (t , s,Ys)| ≤ αγ(t , s)|Xs −
Ys |, 0 ≤ s ≤ t ,

4. αsupt≥0

� t
0 γ(t , s)|||k(t , s;ω)|||d s < 1.

Then equation (1) has a unique solution in Cb

and the Ulam-Hyers stability.
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Proof. As in Theorem 3.1, with X t ∈ Cb , one
gets

∥Λ(X t )∥2

≤ ∥h(t ;ω)∥2 +
� t

0
|||k(t , s;ω)|||∥ f (t , s, Xs)∥2d s

≤ ∥h(t ;ω)∥2 +
� t

0
|||k(t , s;ω)|||γ(t , s)∥Xs∥2d s

≤ ∥h(t ;ω)∥2 +∥Xs∥Cb

� t

0
|||k(t , s;ω)|||γ(t , s)d s

≤ ∥h(t ;ω)∥Cb +∥Xs∥Cb sup
t≥0

� t

0
|||k(t , s;ω)|||γ(t , s)d s

<∞.

Therefore, Λ(Cb) ⊂Cb .

With X t ,Yt ∈Cb , one gets

∥Λ(X t )−Λ(Yt )∥2

≤
� t

0
|||k(t , s;ω)|||∥ f (t , s, Xs)− f (t , s,Ys)∥2d s

≤
� t

0
|||k(t , s;ω)|||αγ(t , s)∥Xs −Ys∥2d s

≤α∥Xs −Ys∥Cb

� t

0
|||k(t , s;ω)|||γ(t , s)d s

≤α∥Xs −Ys∥Cb sup
t≥0

� t

0
|||k(t , s;ω)|||γ(t , s)d s.

Hence,

∥Λ(X t )−Λ(Yt )∥Cb

≤ ∥Xs −Ys∥Cbαsup
t≥0

� t

0
γ(t , s)|||k(t , s;ω)|||d s.

By assumption (4), we state that Λ is strictly
contractive. Thus, by Banach’s fixed point prin-
ciple, equation (1) has a unique solution in Cb .

Let X t be a solution of inequation (7) and let
Ut be the solution of equation (1). As in Theorem
3.1, one obtains

∥X t −Ut∥2 ≤ ϵ

1−C3
,∀t ∈ [0,∞), (21)

where C3 = αsupt≥0

� t
0 γ(t , s)|||k(t , s;ω)|||d s,

which implies that equation (1) is stable in the
sense Ulam-Hyers and completes the proof.

Theorem 4.2. Consider the random integral
equation (1) under the following conditions

1. h(t ;ω) ∈Cφ,

2. | f (t , s, Xs)| ≤ φ(t )[z(t ,ω)+γ(t , s)|Xs |] for
0 ≤ s ≤ t <∞, where z(s,ω) is a second or-
der stochastic process in Cφ and γ(t , s) > 0
is a bounded continuous function defined
for 0 ≤ s ≤ t ,

3. | f (t , s, Xs)− f (t , s,Ys)| ≤αφ(t )|Xs−Ys |,0 ≤
s ≤ t ,

4. αsupt≥0

� t
0 |||k(t , s;ω)|||φ(s)d s < 1.

Then equation (1) has a unique solution in Cφ

and the Ulam-Hyers-Rassias stability.

Proof. According to [10], (C1,φ,Cφ) is admis-
sible with respect to operator Γ in (11). That
is Γ(C1,φ) ⊂ Cφ. Condition (2) implies that
k(t , s;ω) f (t , s, Xs) is in C1,φ whenever X t ∈ Cφ.
Therefore, Λ(Cφ) ⊂Cφ.

We shall show that if X t ,Yt ∈ Cφ then
k(t , s;ω) f (t , s, Xs)−k(t , s;ω) f (t , s,Ys) belongs to
C1,φ. By assumption (3), one has

|k(t , s;ω) f (t , s, Xs)−k(t , s;ω) f (t , s,Ys)|
φ(s)φ(t )

≤α|||k(t , s;ω)||| |Xs −Ys |
φ(s)

,

which implies that ∥k(t , s;ω) f (t , s, Xs) −
k(t , s;ω) f (t , s,Ys)∥C1,φ ≤αsup0≤s≤t |||k(t , s;ω)|||∥Xs−
Ys∥Cφ < ∞. Hence, k(t , s;ω) f (t , s, Xs) −
k(t , s;ω) f (t , s,Ys) ∈ C1,φ when Xs ,Ys ∈ Cφ.
Again, since (C1,φ,Cφ) is admissible with re-
spect to Γ, one has

� t
0 k(t , s;ω) f (t , s, Xs) −

k(t , s;ω) f (t , s,Ys)d s ∈ Cφ. Thus, one has
Λ(Cφ) ⊂Cφ.

As in proof of Theorem 4.1, one has the fol-
lowing estimates

∥Λ(X t )−Λ(Yt )∥2

≤
� t

0
|||k(t , s;ω)|||∥ f (t , s, Xs)− f (t , s,Ys)∥2d s

≤αφ(t )

� t

0
|||k(t , s;ω)|||∥Xs −Ys∥2d s.
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Therefore,
∥Λ(X t )−Λ(Yt )∥2

φ(t )

≤α
� t

0
|||k(t , s;ω)|||∥Xs −Ys∥2d s

≤α
� t

0
|||k(t , s;ω)|||∥Xs −Ys∥2

φ(s)
φ(s)d s

≤αsup
t≥0

(� t

0
|||k(t , s;ω)|||φ(s)d s

)
∥Xs −Ys∥Cφ .

from which we deduce that

∥Λ(X t )−Λ(Yt )∥Cφ

≤αsup
t≥0

(� t

0
|||k(t , s;ω)|||φ(s)d s

)
∥Xs −Ys∥Cφ .

(22)

By assumption (4), the mapping Λ is strictly
contractive. Thus, according to Banach’s fixed
point principle, equation (1) has a unique solu-
tion Ut ∈Cφ.

Let X t ∈ Cφ be a solution of inequation (9).
We have

∥X t −Λ(X t )∥2 ≤φ(t ), (23)

from which, we deduce the following inequality
∥X t −Λ(X t )∥Cφ ≤ 1.

By the triangle inequality, we get:

∥X t −Ut∥Cφ ≤ ∥X t −Λ(X t )∥Cφ +∥Λ(X t )−Λ(Ut )∥Cφ

≤ 1+C4∥X t −Yt∥Cφ ,

where C4 = αsupt≥0

� t
0 |||k(t , s;ω)|||φ(s)d s.

Therefore,

∥X t −Ut∥Cφ ≤
1

1−C4
. (24)

Thus, ∥X t −Ut∥2 ≤ 1

1−C4
φ(t ),∀t ≥ 0, which

implies that equation (1) has the Ulam-Hyers-
Rassias stability with respect to φ(t ). This ends
the proof.

5. An example

Let us consider the following random equa-
tion on probability space (Ω,F ,P) that is one di-
mensional case in [12]

Ẋ (t ,ω) = A(ω)X (t ;ω)+ f (t , X (t ;ω)), (25)

for t ≥ 0 and where

1. X (t ;ω) is the unknown random process,

2. A(ω) is a random variable on the probabil-
ity space,

3. f (t , x) is a given function for t ≥ 0 and
x ∈R such that

| f (t , x)− f (t , y)| ≤α|x − y |

with f (t ,0) = 0 and α sufficiently small.

The above random equation can be reduced
to the following random integral equation

X (t ;ω) = e A(ω)t X0(ω)+
� t

0
e A(ω)(t−s) f (s, X (s;ω))d s

(26)
where X0(ω) := X (0,ω). Let the free stochastic
term of our equation be

h(t ;ω) = e A(ω)t X0(ω)

and let the stochastic kernel be

k(t , s;ω) = e A(ω)(t−s), 0 ≤ s ≤ t <∞.

As shown in Section 4 of [12], the following
holds for ω ∈Ω0

|||k(t , s;ω)||| ≤ K e−γ(t−s), (27)

where Ω0 is a subset of Ω such that P(Ω0) = 1,
K > 0 and α as defined above. For the sake of
simplicity, we suppose that A(ω) is almost sure
bounded above by −γ where γ is a positive num-
ber. Thus, one has

|||k(t , s;ω)||| ≤ e−γ(t−s) (28)

which implies
� t

0
|||k(t , s;ω)|||d s

≤
� t

0
e−γ(t−s)d s

= 1

γ
(1−e−γt ) < 1

γ
.
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If
α

γ
< 1 and under bounded condition on random

variable X0(ω), all conditions in Theorem 3.1
are satisfied. One can conclude that the equation
(25) is stable in the sense of Ulam-Hyers. Simi-
larly, notice in this case that the function γ(t , s)
is 1. One can show all conditions in Theorem 4.1
are satisfied as well.

Furthermore, for the case I = [0,1], if one
chooses the function φ(t ) = t , then the constant
Nφ in Theorem 3.2 is 1/3. So if

α√
6γ

< 1, all

conditions in Theorem 3.2 are satisfied. Thus,
equation (25) is stable in the sense of Ulam-
Hyers-Rassias with respect to φ.

References

[1] M. Akkouchi, A. Bounabat, M.H.L. Rhali. (2011).
Fixed point approach to the stability of an inte-
gral equation in the sense of Ulam-Hyers-Rassias.
Annales Mathematicae Silesianae, 25, 27-44. DOI:
10.1155/2013/612576.

[2] J.A. Baker. (1991). The stability of certain functional
equations, Proceedings of The American Mathe-
matical Society, Volume 112, Number 3. DOI:
10.2307/2048695.

[3] J. Brzdek, L. Cadariu, and K. Cieplinski. 2014.
Fixed Point Theory and the Ulam Stability. Hin-
dawi Publishing Corporation, Journal of Func-

tion Spaces, Article ID 829419, 16 pages. DOI:
10.1155/2014/829419.

[4] L.P. Castro, D.A. Ramos. 2009. Hyers-Ulam-Rassias
stability for a class of nonlinear Volterra integral
equations, Banach J. Math. Anal. 3, no. 1, 36–43.
DOI: 10.15352/bjma/1240336421.

[5] S.M. Jung. 2007. A fixed point approach to the sta-
bility of a Volterra integral equation, Fixed Point
Theory and Applications, Vol. 2007, 9 pages. DOI:
10.1155/2007/57064.

[6] S.M. Jung. 2010. A fixed point approach to the
stability of differential equations y ′ = F (x, y), Bull.
Malays. Math. Sci. Soc. (2) 33, no. 1, 47–56.

[7] D.H. Hyers. 1941. On the stability of linear func-
tional equation, Proc. Natl. Acad. Sci. USA 27, 222-
224. DOI: 10.1073/pnas.27.4.222.

[8] T. Miura, S. Miyajima, S.E. Takahasi. 2003. A
characterization of Hyers-Ulam stability of first or-
der linear differential operators, J. Math. Anal.
Appl. 286, no. 1, 136–146. DOI: 10.1016/S0022-
247X(03)00458-X.

[9] T. Miura, S. Miyajima, S.-E. Takahasi. 2003. Hy-
ers–Ulam stability of linear differential operator
with constant coefficients, Math. Nachr. 258 (2003),
90–96. DOI: 10.1002/mana.200310088.

[10] W.J. Padgett, A.N.V Rao. 1979. Solution of a
stochastic integral equation using integral contrac-
tors, Information and Control, 41, 56-66. DOI:
10.1016/S0019-9958(79)80005-4.

[11] Th.M. Rassias. 1978. On the stability of the linear
mapping in Banach spaces, Proc. Amer. Math. Soc.
72 (1978), 297-300. DOI: 10.2307/2042795.

[12] C.P. Tsokos. 1969. On a stochastic integral equation
of the Volterra type. Mathematical Systems Theory,
Vol. 3, No. 3. DOI: 10.1007/BF01703921.

 

Nguyen Tan Huy, Huynh Anh Thi / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(60) (2023) 80-87 87 

 




