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Abstract  

This paper uses XGBoost to predict bearing capacity of concrete piles. The proposed model is trained and tested against 

a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the default XGBoost 

model consistently outperforms the Deep Neural Network (DNN) regression. XGBoost is a suitable tool for engineers 

to predict pile bearing capacity. 
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Tóm tắt  

Trong bài báo này, XGBoost được sử dụng để dự đoán sức chịu tải của cọc bê tông. Mô hình đề xuất được huấn luyện 

và kiểm tra với 472 dữ liệu, thu thập từ các thí nghiệm nén tĩnh tại Việt Nam. Kết quả thu được chỉ ra rằng, phương 

pháp hồi quy XGBoost cho kết quả chính xác hơn so với phương pháp DNN. XGBoost có thể được sử dụng để dự đoán 

sức chịu tải của cọc bê tông.    

Từ khóa: Sức chịu tải của cọc; Máy học; XGBoost; 

1. Research background and motivation 

Deep foundation is a common and 

obligatory type of foundation to support 

superstructure having heavy loads or laying on 

weak ground. Besides drilled shafts, driven 

piles made of timber, steel, precast concrete and 

composite are also an effective solution in 

terms of cost and quality. In order to design pile 

foundation, the axial pile bearing capacity is 

regarded as the most important parameter. 

Therefore, estimating this parameter has been 

the subject of numerous theoretical and 

experimental researches in geotechnics. 

Overall, there are five main methods to 

evaluate the pile bearing capacity, namely the 

static analysis, dynamic analysis, dynamic 

testing, pile load test, and in-situ testing [1]. 

Design guidelines based on static analysis often 
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recommend using the critical depth concept. 

However, the critical depth is an idealization 

that has neither theoretical nor reliable 

experimental support, and it contradicts 

physical laws.  

Dynamic analysis methods are based on 

wave mechanics for the hammer-pile-soil 

system. The ambiguity in the hammer impact 

effect, as well as changes in soil strength from 

the conditions at the time of pile driving, and at 

the time of loading, cause uncertainties in 

bearing capacity determination. Dynamic 

testing methods are based on monitoring 

acceleration and strain near the pile head during 

driving. However, the measurements can only 

be analyzed by an experienced person. In 

addition, another considerable limitation is that 

the capacity estimation is not available until the 

pile is driven. The pile load test, a field 

measurement of full-scale pile settlement 

subjected to static load, is believed to provide 

the most accurate results. However, this method 

is time consuming and costly. Therefore, 

developing a simple, economical and accurate 

method is highly desired. 

The measurements of soil properties by in-

situ test methods have developed rapidly since 

1970’s. Concurrent with this development is the 

increasing use of in-situ test data in prediction 

of pile bearing capacity. The common tests 

include: standard penetration test (SPT), cone 

penetration test (CPT), flat dilatometer test 

(DMT), pressuremeter test (PMT), plate 

loading test (PLT), dynamic probing test (DP), 

press-in and screw-on probe test (SS) and field 

vane test (FVT). Each test applies different 

loading schemes to measure the corresponding 

soil response in an attempt to evaluate material 

characteristics. Among these in-situ test data, 

the SPT is commonly used to predict the 

bearing capacity of piles [2]. 

Different SPT data based methods for 

determining the bearing capacity of piles have 

been proposed in the literature. They can be 

categorized into two main approaches, direct 

and indirect methods. Amongst the two, the 

direct methods are more widely accepted 

among field engineers due to the ease of 

computation. For example, Decourt [3] 

proposed SPT direct methods for sandy or 

clayed soil proposed. For a case study in Iran 

[4], the authors analyzed the pile by a finite 

element method and compared it with four 

different SPT direct methods to find a 

reasonable prediction for its bearing capacity. 

However, according to Shariatmadari et al. [5], 

all of these empirical formulations have some 

inadequacies. Therefore, researchers have been 

exploring other ways to utilize SPT data to 

predict pile bearing capacity and using machine 

learning algorithms is a viable option. 

Machine learning (ML), a branch of 

artificial intelligence, that mimics the operation 

of human brain, can non-linearly infer new 

facts from adaptively learning historical data. 

Moreover, the performance of machine learning 

(ML)-based models can be improved gradually 

along with the increase of learning data, so they 

can be kept up-to-date with high requirements 

of accuracy for complex engineering problems. 

Many contributions have demonstrated the 

effectiveness and efficiency of ML-based 

models to deal with civil engineering-related 

problems, for example, predicting mechanical 

properties (compressive/tensile strength/shear) 

of hardened concrete [6], estimation of 

tribological and rheological properties of fresh 

concrete [7], ultimate bond strength of corroded 

reinforcement and surrounding concrete [8], 

evaluation and detection of concrete structure 

deterioration. 

ML-based models, especially Artificial 

Neural Network (ANN), have also been used to 
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predict pile bearing capacity. Early works in 

this direction include Lee and Lee [9]; Teh et 

al. [10], where ANN with error back 

propagation is utilized.  

Recently, in the field of machine learning, 

hybrid models that incorporate mutual merits of 

different techniques have attracted increasing 

interest because of their robustness, efficiency, 

and superiority to baseline models. For 

instance, ensemble models use boosting, 

stacking, or voting strategies to compensate 

errors of each constituent model [1]. Especially, 

Extreme Gradient Boosting (XGBoost), an 

ensemble tree model, has become very popular 

(XGBoost 2021). Le et al. [11] recently utilized 

XGBoost-based ensemble model for predicting 

heating load of buildings for smart city 

planning and concluded that the proposed 

ensemble model is the most robust in 

comparing with other machine learning models, 

including classical XGBoost model, SVM, 

Random Forest (RF), Gaussian process (GP), 

and classification and regression trees (CART). 

Nguyen et al. [12] recently demonstrated 

XGBoost to be a promising tool to assist civil 

engineers in forecasting deflections of 

reinforced-concrete members. In addition, the 

outstanding performance of XGBoost-based 

models has been further convincingly 

demonstrated in a variety of practical problems 

[13,14]. 

Motivated by the successes of XGBoost-

based ensemble models, this study aimed to 

investigate an XGBoost-based model to predict 

bearing capacity of reinforced concrete pile and 

compared its performance with those of other 

baseline popular machine learning models, 

including deep ANN and Random Forrest.  

2. Research methodology 

2.1. The collected dataset of static load tests 

To train and validate the proposed machine 

learning method, this study relies on a dataset 

of static load test of driven reinforced concrete 

piles. This dataset includes 472 complied in the 

previous work of Pham et al. [15]. This is a 

fairly large dataset and highly appropriate for 

constructing and verifying sophisticated 

machine learning models. It is noted that pre-

cast piles with closed tips are driven into soil 

layers with the employment of hydraulic pile 

driven machine to record capacity of piles. Fig. 

1 demonstrates the experimental set-up used for 

data measurement. Fig. 2 provides illustrations 

for the pile structure, its geometrical variables, 

and soil stratigraphy. Herein, the predictor 

variables include pile diameter (X1), thickness 

of the first soil layer (X2), thickness of the 

second soil layer (X3), thickness of the third 

soil layer (X4), elevation of the natural ground 

(X5), top of pile elevation (X6), elevation of 

the extra segment of pile top (X7), depth of pile 

tip (X8), mean value of SPT blow count along 

pile shaft (X9), and mean value of SPT blow 

count at pile tip (X10). Those ten conditioning 

factors are employed to predict the dependent 

variable Y which is the axial pile bearing 

capacity. In addition, Table 1 reports statistical 

descriptions of the predictor and dependent 

variables. 
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Fig. 1 Static load test experiment for measuring pile bearing capacity 

 

Fig. 2 Demonstration of the pile structure and soil stratigraphy 
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Table 1. Statistical descriptions of the employed variables 

Variables Notation Min Average Std. Max 

Diameter  of pile (mm) X1 300.00 363.77 48.12 400.00 

The thickness of the first soil 

layer that pile embedded (m) 
X2 3.40 3.83 0.48 5.72 

The thickness of the second 

soil layer that pile embedded (m) 
X3 1.50 6.58 1.64 8.00 

The thickness of the third 

soil layer that pile embedded (m) 
X4 0.00 0.33 0.46 1.69 

Pile top elevation (m) X5 0.68 2.80 0.62 3.40 

Natural ground elevation (m) X6 3.04 3.50 0.08 4.12 

The elevation of extra segment pile top (m) X7 1.03 2.92 0.60 4.35 

The depth of pile tip (m) X8 8.30 13.54 1.80 16.09 

The average SPT blow count along the pile shaft X9 5.60 10.74 2.26 15.41 

The average SPT blow count at the pile tip X10 4.38 7.06 0.66 7.75 

The axial bearing capacity load of pile (kN) Y 407.20 984.20 353.21 1551.00 

 

2.2. Extreme Gradient Boosting (XGBoost) 

machine 

XGBoost is an open-source library that 

provides machine learning algorithms, both 

regression and classification, in the gradient 

boosting framework. It was originated from an 

academic research project but has become a 

widely used library in both academia and 

industry. The library is highly efficient, flexible 

and portable. It supports multiple languages, 

including C++, python, R, Java, Scala and 

Julia. The library also supports distributed 

training on clusters on cloud computing 

platforms, such as Amazon Web Services, 

Google Cloud Platform and Microsoft Azure. 

Under the hood, the XGBoost algorithm 

builds a series of weak leaners, which are 

classification or regression trees (CART). 

These weak learners are then combined to form 

the final prediction model. Like other boosting 

methods, XGBoost do not build all the 

regression trees at the same time but step by 

step. The tree in the current step is constructed 

in such a way that it minimizes the average 

value of the loss function of all the steps on the 

training set.    

More specifically, let the training data be 

, where  is an input 

vector with m features, and  is the 

corresponding output. Assume  is the 

prediction output at step . Then, at step , 

XGBoost builds the tree that minimizes the 

following objective function: 

     (1) 

where  is any convex and differentiable loss 

function measuring the difference of the 

prediction and the provided output, 

 is the prediction 

function of the tree, where  is the vector 

of scores on leaves,  is a 

function assigning each data point to the 

corresponding leaf, and  is the number of 

leaves.  The last term, , is the regularization 

term. Its purpose is to reduce overfitting, a 

common issue in machine learning. This term 

penalizes complex trees with many leaves and 
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gives priority to more simple and predictive 

trees, more specifically 

        

   (2) 

where  and  are parameters. 

Approximating the right hand side of Eq. (1) 

by using the second-order Taylor expansion of  

 w.r.t to the second variable we have: 

                                         (3)

where  and 

. 

Removing the term , which 

does not depend on the choice of the decision  

 

tree in the current step, from Eq. (2) and 

collecting the terms associated with the same 

score (the data points on the same leaf gets the 

same score), we are left with a simpler 

objective function that needs to be minimized: 

 

=                    (4)  

where is the subset of the input set associated 

with leaf , i.e., . 

It can be noted that the first term of Eq. (4) 

is a sum of independent quadratic functions in 

. Therefore, the optimal  and the minimal 

objective   are given by: 

                                         (5)

This equation can be used to measure how 

good a tree is as a candidate for the current 

step. However, these optimal values can only 

be calculated when the structure of the tree in 

the current step has already determined. As it is 

not feasible to consider all the possible tree 

structures, XGBoost built trees iteratively.  

At the beginning, XGBoost sorts the input 

data set according to feature values to form a 

tree with zero depth. Then in each step, a new 

tree is created by an optimal branch splitting. 

According to Eq. (5), this splitting, which 

maximizes the lost reduction, is calculated by 

    (6) 

where  is the subset of input indices on the 

left of the split  and  is the subset of indices 

on the right of the split. 

The XGBoost algorithm is summarized in 

Fig. 3. In addition to using the regularization 

term  in Eq. (1), XGBoost let users specify 

two parameters,  and learning rate 

, to combat overfitting. The parameter 

, as suggested by the name, limits 

the maximal tree depth that is allowed by 

XGBoost. The possible range for this parameter 

is  and the default value is 

. The learning rate, also called 

shrinkage, scales the prediction of newly built 

tree by a factor  to reduce the 

influence of each individual tree and allow trees 
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in the later steps chances to improve the model. 

More specifically: 

                      (71) 

The default value of  is 0.3. 

 

The XGBoost algorithm 

Specify the algorithm parameters 

Sort the input set by feature values  

For each iteration  

     Calculate  and  

Examine the current tree and decide the 

best split using Eq. (6) 

The weights of the new tree  is 

computing using Eq. (5) 

The new prediction is computed using 

Eq. (7)                                                                          

Return the trained XGBoost model 

Fig. 3 The XGBoost algorithm 

3. Experimental results and discussion 

For our experiments, we have developed 

XGBoost model in Python using the following 

packages: i) XGBoost Python package version 

0.90, the official implementation of XGBoost 

in Python ii) scikit-learn version 0.23.2, a 

machine learning library for Python language. 

For XGBoost, the objective is set to be reg: 

squarederror (regression with square error) and 

the number of boost rounds (number of 

iterations) is chosen to be 100. The data 

consisting of 472 samples is randomly split into 

two sets: a training set of 424 samples (90%) 

and a testing set of 48 samples (10%).  

In order to accurately assess the predictive 

capability of different models, the following 

performance metrics are considered: RMSE, 

the mean absolute percentage error (MAPE), 

the mean absolute error (MAE) and the 

coefficient of determination (R2). RMSE has 

been introduced in the previous section. MAPE, 

MAE, and R2 are given by: 

      (8) 

       (9) 

     

  (10) 

where YA,i and YP,i are the actual and the 

predicted bearing capacity, respectively; N is 

the number of data instances;  is the average 

of actual values. It should be noted that smaller 

RMSE, MAE or MAPE is better, while higher 

R2 is better. 

Table 2 presents the performance of 

XGBoost with default parameters 

recommended by the XGBoost toolbox.  

Table 2. Performance of XGBoost 

Phase Metrics XGBoost 

Training 

RMSE 39.64 

MAE 21.02 

MAPE (%) 2.51 

R2 0.99  

Testing 

RMSE 101.30 

MAE 73.77 

MAPE (%)  7.78 

R2 0.92 

In this section, to confirm the predictive 

capability of the newly model XGBoost used 

for pile bearing capacity prediction, its 

performance is compared to the capable 

machine-learning-based models based on Deep 

Neural Network (DNN) for regression. The 

DNN has been trained with the state-of-the-art 

Adam optimizer [16] and implemented via the 

scikit-learn Python library [17]. The DNN has 

been constructed with 2, 3, 4, and 5 hidden 

layers. The DNN is selected as benchmark 

models in this section because neural networks 

have been extensively and successfully 

employed in data-driven pile capacity 

estimation. In DNN, ReLU (Rectified Linear 

Unit) is employed and the number of training 

epochs is set to be 1000; the number of neurons 

in the hidden layers is selected via a five-fold 

cross validation. 



Tran Thu Hien, Hoang Nhat Duc / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 3(58) (2023) 3-11 10 

Table 3. Performance statistic in the training phase 

Indices DNN 2 Layers DNN 3 Layers DNN 4 Layers DNN 5 Layers XGB 

  Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

RMSE 93.85 3.22 89.37 4.25 90.71 1.29 94.97 3.57 39.64 2.25 

MAE 72.47 2.11 68.94 3.4 70.19 0.73 74.35 3.59 21.02 1.47 

MAPE 7.63 0.21 7.24 0.34 7.33 0.06 7.8 0.42 2.51 0.19 

R2 0.93 0.005 0.94 0.006 0.93 0.03 0.93 0.006 0.99  0.004 

 

Table 4. Performance statistic in the testing phase 

Indices DNN 2 Layers DNN 3 Layers DNN 4 Layers DNN 5 Layers XGB 

  Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

RMSE 98.85 11.58 98.59 15.13 95.49 18.9 98.9 10.22 86.99 9.59 

MAE 75.58 9.61 74.54 10.23 73.53 10.6 76.85 8.35 73.77 8.79 

MAPE  8.06 0.9 7.82 0.95 7.7 0.97 8.07 0.84 7.78 0.8 

R2 0.92 0.02 0.92 0.03 0.93 0.03 0.93 0.02 0.92 0.03 

In Table 3 and Table 4, the means and 

standard deviations of all the metrics are 

provided for all considered models in both 

training and testing phases. Variants of DNN 

with different number of hidden layers (2, 3, 4 

and 5) appear to have similar performances, 

especially in the testing phase. Among them, 

the variant with 4 layers is the better one. 

However, even this variant lags behind 

XGBoost in both training and testing phase. 

The reductions in the average of testing RMSE 

of XGBoost compared to DNN with 2, 3, 4 and 

5 layers are roughly 12%, 11.7%, 9% and 12% 

respectively. Not only XGBoost has better 

mean but it also has better median and 

interquartile range in all metrics. The 

performances of XGBoost in all metrics are 

also very robust.  

4. Concluding remarks 

In this paper, we have formulated and tested 

the XGBoost model in predicting bearing 

capacity of concrete piles. XGBoost is the 

crucial part of the model providing the 

prediction from a set of ten feature variables, 

including thickness of the first, second and 

third soil layer, pile diameter, elevation of the 

natural ground, of top of pile and of the extra 

segment of pile top, depth of pile tip, mean 

value of SPT blow count along pile shaft and of 

SPT blow count at pile tip.  

The model is trained, validated and 

compared on subsets of a dataset consisting of 

472 samples. The results indicate that the 

default XGBoost model is more accurate and 

robust than the DNN models. Therefore, it is 

highly recommended to use in pile bearing 

capacity prediction. Incorporating advanced 

feature selection and utilizing other state-of-

the-art metaheuristic are a few lines of research 

that can be considered to advance further the 

study we have proposed. 
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