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Abstract

This paper aims at developing an artificial neural network (ANN) for regression analysis. The ANN model is developed
in Excel Visual Basic for Applications (VBA) to facilitate its practical implementations. The capability of the developed
ANN program has been tested with the task of pile bearing capacity prediction.
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Tém tit

Bai bao xay dung mot cong cu dung cho phén tich hdi quy dwa trén moé hinh mang no-ron than kinh nhan tao (ANN).
Mo hinh ANN dugce phat trién trén nén tang Excel VBA d€ nang cao tinh tmg dung thyc tién. Chuong trinh phan tich
hoi quy dua trén ANN da duoc st dung d€ du bao suc chiu tai cia coc.

Tir khoa: Mang no-ron than kinh nhan tao; phan tich dit li€u; Phéan tich hoi quy; Excel VBA; Strc chiu tai cta coc.

1. Introduction successfully developed to cope with a wide
range of problems such as pile bearing capacity
estimation [1-6], concrete strength estimation
[7-11], the soil compression coefficient [12,
13], soil shear strength modeling [14-16], etc.

Regression analysis is a crucial task in the
construction industry. Regression models are
able to analyze past data records and yield
prediction results that immensely help the
decision-making processes during various Particularly, the ANN-based regression
phases of a construction project. Various model plays an important role in modeling
regression analysis methods have been  various complex phenomena in  civil
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engineering [17, 18]. Nevertheless, few studies
have dedicated to the development of ANN
models within the Excel VBA environment.
Microsoft Excel is a popular tool for
performing various modeling tasks in civil
engineering [19-21]. In this regard, the ability
of building regression analysis models in Excel
can be helpful for practicing engineers who
have to cope with various data analysis tasks.
This paper contributes a tool implementing the
ANN regression model that can be directly built
and used in the Excel VBA environment.

2. Artificial Neural Network (ANN) developed
in Excel VBA

An ANN regression model relies on a set of
neurons in the hidden layer to compute the
predicted result of a dependent variable [22].
An ANN model consisting of two neurons is
illustrated in Fig. 2.1. To cope with nonlinear
regression tasks, an activation function (e.g. the
sigmoid function) can be used [23]. The
process of model training and prediction using
an ANN model can be described as follows (i)

(Bias)

Data collection, (ii) Data normalization, (iii)
Model selection, (iv) Model training, and (v)
Model prediction and evaluation.

In the first step, a dataset including predictor
variables and predicted variable is collected.
The ranges of the variables in this dataset are
standardized in the second step. Usually, the Z-
score equation is used. The suitable parameters
of an ANN model including the learning rate
and the number of neurons in the hidden layer
are determined in the model selection step. The
model is trained in the next step. The final step
involves the employment of the trained model
to predict novel data samples. Various indices
such as root mean square error (RMSE), mean
absolute percentage error (MAPE), and
coefficient of determination (R?) can be used to
quantify the model performance [24]. An ANN
class is coded in Excel VBA and its object can
be created for constructing a regression model
(refer to Fig. 2.2). The ANN class utilizes
supporting functions stored in a class named
myMatrix (refer to Fig. 2.3).

L Wi Wi Wi
W= 1 1 1
W 21 W 22 W 23

WZZ W211 W212 W213

Fig. 2.1 Demonstration of an ANN consisting of two neurons in the hidden layer

Dim model As ANNR

Set model = New ANNR
model.NR = 10

model.alpha = 0.002

model .MaxEpoch = 500
model.Set X (Xtr)
model.Set T (Ttr)
model.Train

Dim Wl Trained As Variant, W2 Trained As Variant
Wl Trained = model.Get W1
W2 Trained = model.Get W2

(a)

Private N
Private
Public N

Public al 8
Public M: As Integer
Public RMSE, MAPE, R2 As Double
Public Function Train()
Dim mM atri
Set mM
D = UBound 7 2)
Wl = mM.RandomMatrix(NR, D + 1, =3, 3)
W2 = mM.RandomMatrix(1l, NR + 1, -3, 3)

(b)

Fig. 2.2 The ANN model developed in Excel VBA: (a) Create an ANN object and (b) The function used for model training
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Public Function RandomMatrix(ByvVal N As Integer, ByVal D As Integer, ByVal LB As Double, _

ByVal UB As Double) As Variant

Dim W As Variant

ReDim W(N, D)

Dim i, k As Integer

For i =1 To N
For k=1 To D

W(i, k) = LB + (UB - LB) * Rnd()

Next k

Next i

RandomMatrix = W

(a)
Public Function Multiplication(ByVal A As Variant, B As Variant) As Variant
' A = MxN. B = NxP. C = MxP
Dim M, N, P As Integer
M = UBound (A, 1)
N = UBound(A, 2)
P = UBound (B, 2)
Dim C As Variant
ReDim C (M, P)
Dim i, j, k As Integer

For i =1 To M
For j =1 To P
C(i, 3) =0
For k =1 To N
C(i, j) = C(i, 3) + A(i, k) * B(k, J)

Multiplication = C
End Function

(b)

Fig. 2.3 Examples of functions provided in the myMatrix class: (a) The function that generates a matrix of random
numbers and (b) The function that performs matrix multiplication

' Backward pass ————————————————————
Dim Delta As Variant
ReDim Delta (N, 1)
Dim k As Integer
For k = 1 To N
Delta(k, 1) = T(k, 1) - Y(k, 1)
Next k
Dim zZz1 B k As Variant
Dim dE _dW2 As Variant
Dim dE_dWl As Variant
For k = 1 To N
Z1 B k = mM.ExtractMatrixColumn(Zl B, k)
2l B k = mM.Transpose (Z1 B k)
dE _dW2 = mM.MultiplyWithScalar (21 B k, -1 * Delta(k, 1))
Dim Q As Variant
ReDim Q(NR, 1)
Dim v As Integer
For v = 1 To NR
Q(v, 1) = -Delta(k, 1) * W2(1, v) * zl1 B(v, k) * (1L - Z1 B(v, k))
Next v
Dim XM As Variant
ReDim XM(NER, D + 1)
Dim z As Integer
For v = 1 To NR
For z =1 To D + 1
XM(v, z) = X B(k, z)
Next =z
Next v
dE dwWwl = mM.Multiplication(Q, XM)
' Update W1 and W2
For v = 1 To NR
For z =1 To D + 1
Wl(v, z) = Wl(v, z) - alpha * dE dWl (v, z)
Next z
Next v
For v = 1 To NR + 1
W2(l, v) = W2(l, v) - alpha * dE dw2(l, v)
Next v
Next k

Fig. 2.4 VBA code used to adapt the ANN’s weights
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Given a dataset  {X, T},
X, =[X;, X,,..., X5,,] denoting the it predlctor
variable, and T; representing the i dependent
variable, an ANN model can be trained by this
dataset to approximate the nonlinear mapping
from Xj to Ti. It is noted that Xps1 = 1
corresponds to the bias in the input layer. Given
the matrices W1 and W>, this mapping function

can be described as follows:
D+1

S, = Zwljl; X X
(1)
where u = 1,2,..., NR denotes the index of a
neuron in the hidden layer. NR is the number of
neurons.
1 1
=o(S,)

T1+ exp(=S;) @)

where o () is the sigmoid activation function.

NR+1

y =D Zyx Wy (3)

u=1

where u=12,..,NR+1 and Z}.,,= 1 accounts
for the bias in the hidden layer.

oE 8E oy 6Zl oS,

The weight matrices of an ANN model are
adapted via the backpropagation and gradient
descent algorithms [25]. The VBA code used to
adapt the ANN’s weights (W! and W?) is
demonstrated, in Fig. 2.4. Given the loss
function E = = (t - y)?, the equations used to
update the weight matrices:

oE

W" W" —aX—
OWL

where L denote the index of layers in the ANN
model.
The partial derivative of E with respect to a
weight of W2 is given by:
OE 8E oy

= =—(t
oW, (

—y)xZ}=-AxZ}
8y 6W13 y) 1 u

(4)

=-Ax[Z},Z;,..]] (5)

Alternatively, — cE
oW?

Considering an ANN model with two
neurons and two input variables, the equation
used to compute the partial derivative of E with
respect to a weight in the first row of Wi is
given by:

= __(t_y)xwlzlx[zllx(l_zll)]xxl

awlll 6y 821 881 awlll
= —AxXW2 X[Z x (1-Z)]x %, (6)
8le 1 1
where gll =[Z; x(1-Z,)].
OE aE 621 oS,
awl - ay aazyl 881 an - (t—y)xwlix[ZfX(l_Z:)]sz
12 12

=—A ><W121 X [le x(1— le)] X X, @)

CE _0E & oz oS
WL oy ozt oSt oWk~

—(t- y)lezlx[lex(l—le)]xXS

=-AxW x[Z] x (1-Z;)]x1 (8)

Similarly, the partial derivative of E with respect to a weight in the second row of Wj is given by:

oE 8E oy 821 os;

_ = —(t
WL oy azl oSt owl B

= Y)xWi5 x[Z; % (1= Z;)]x %,

=-AxW2 x[Z] x(1-Z;)]x1 9)
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Alternatively, the weights of Wy are updated as follows:

a?/vEll = —AxW x{Z} x (L= Z))}x[X, X5, X5] = —Ax W3 x{Z x (1= Z})}x [%;, %,.,1] (10)
aavil = —AxW,5 x{Z; x (L= Z;)}x[X, X5, %3] = =AxW,5 x{Z; x (L - Z5)}x[%,, %,,1] (11)
Accordingly, it is able to summarize the updating rule for W1 as follows:
86\/51 =Lﬂx [x., %,.1] (12)
where a=-AxW3x{Z x(1-Z;)} and b=-AxW2x{Z; x (1 Z,)}.
3. Model application With the number of neurons = 10, the

In this section, the ANN regression model
constructed in Excel VBA is used to estimate
the pile bearing capacity. The ANN model is
trained and tested with a dataset collected in
[26]. Herein, the hammer weight (kN), drop
height (m), length (m), pile set (mm), and pile
cross-sectional area (cm?) are used as predictor
variables. The pile bearing capacity measured
in KN is the dependent variable. There are 50
records in the collected data. Herein, 40
samples have been used for training the ANN.
The rest of the data is used for testing the
trained model.

learning rate 0.002, and the number of
training epochs 500, the ANN can
successfully learn the mapping function
between the set of predictor variables and the
pile bearing capacity. The RMSE, MAPE, and
R? of the model in the training phase are
186.42, 18.35%, and 0.96. These indices in the
testing phase are 306.56, 17.06%, and 0.89.
These facts mean that the ANN model is able to
explain 96% and 89% of the variation of the
pile bearing capacity in the training and testing
datasets, respectively. The prediction results of
the ANN model are graphically presented in
Fig. 3.1.
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Fig. 3.1 The prediction results of the ANN model (Y and T denote the predicted and actual pile bearing capacity,
respectively): (a) Training phase and (b) Testing phase

4. Conclusion

Regression analysis is an important task in
civil engineering. This study has put forward an
ANN model developed in Excel VBA to assist
the  decision-making  process involving
approximation of nonlinear functions. The
ANN model has been used to estimate the pile
bearing capacity with good prediction
performance (R? = 0.89 in the testing phase).
Future extensions of the current study may
consider the applications of the ANN model in
other nonlinear regression tasks.

Supplementary material

The Excel VBA code of the program can be
accessed at:

https://github.com/NDHoangDTU/ANNR_E
xcelVBA
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